These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 11518297)

  • 1. Ozone predictions in Atlanta, Georgia: analysis of the 1999 ozone season.
    Cardelino C; Chang M; St John J; Murphey B; Cordle J; Ballagas R; Patterson L; Powell K; Stogner J; Zimmer-Dauphinee S
    J Air Waste Manag Assoc; 2001 Aug; 51(8):1227-36. PubMed ID: 11518297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of the Urban Airshed Model to forecasting next-day peak ozone concentrations in Atlanta, Georgia.
    Chang ME; Cardelino C
    J Air Waste Manag Assoc; 2000 Nov; 50(11):2010-24. PubMed ID: 11111345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of nonlinear regression and neural network models for ground-level ozone forecasting.
    Cobourn WG; Dolcine L; French M; Hubbard MC
    J Air Waste Manag Assoc; 2000 Nov; 50(11):1999-2009. PubMed ID: 11111344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artificial neural network-derived trends in daily maximum surface ozone concentrations.
    Gardner M; Dorling S
    J Air Waste Manag Assoc; 2001 Aug; 51(8):1202-10. PubMed ID: 11518294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trends in meteorologically adjusted ozone concentrations in six Kentucky metro areas, 1998-2002.
    Cobourn WG; Lin Y
    J Air Waste Manag Assoc; 2004 Nov; 54(11):1383-93. PubMed ID: 15587552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface ozone trends in Hong Kong in 1985-1995.
    Wu HW; Chan LY
    Environ Int; 2001 Apr; 26(4):213-22. PubMed ID: 11341288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-term variation in surface ozone and its precursors in Athens, Greece: a forecasting tool.
    Varotsos CA; Efstathiou MN; Kondratyev KY
    Environ Sci Pollut Res Int; 2003; 10(1):19-23. PubMed ID: 12635954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Meteorological factors of ozone predictability at Houston, Texas.
    Draxler RR
    J Air Waste Manag Assoc; 2000 Feb; 50(2):259-71. PubMed ID: 10680356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Forecasting peak daily ozone levels: part 2--A regression with time series errors model having a principal component trigger to forecast 1999 and 2002 ozone levels.
    Liu PW; Johnson R
    J Air Waste Manag Assoc; 2003 Dec; 53(12):1472-89. PubMed ID: 14700134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of maximum daily ozone level using combined neural network and statistical characteristics.
    Wang W; Lu W; Wang X; Leung AY
    Environ Int; 2003 Aug; 29(5):555-62. PubMed ID: 12742398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of the Mesoscale Meteorological Model (MM5)-Community Multi-Scale Air Quality Model (CMAQ) performance in hindcast and forecast of ground-level ozone.
    Nghiem le H; Kim Oanh NT
    J Air Waste Manag Assoc; 2008 Oct; 58(10):1341-50. PubMed ID: 18939781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The New England Air Quality Forecasting Pilot Program: development of an evaluation protocol and performance benchmark.
    Kang D; Eder BK; Stein AF; Grell GA; Peckham SE; McHenry J
    J Air Waste Manag Assoc; 2005 Dec; 55(12):1782-96. PubMed ID: 16408683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. WRF-SMOKE-CMAQ modeling system for air quality evaluation in São Paulo megacity with a 2008 experimental campaign data.
    de Almeida Albuquerque TT; de Fátima Andrade M; Ynoue RY; Moreira DM; Andreão WL; Dos Santos FS; Nascimento EGS
    Environ Sci Pollut Res Int; 2018 Dec; 25(36):36555-36569. PubMed ID: 30374719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Issues with ozone attainment methodology for Houston, TX.
    Smith JH
    J Air Waste Manag Assoc; 2011 May; 61(5):474-6; author reply 476-9. PubMed ID: 21608487
    [No Abstract]   [Full Text] [Related]  

  • 15. Ozone air quality over North America: part I--a review of reported trends.
    Wolff GT; Dunker AM; Rao ST; Porter PS; Zurbenko IG
    J Air Waste Manag Assoc; 2001 Feb; 51(2):273-82. PubMed ID: 11256502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reformulated and alternative fuels: modeled impacts on regional air quality with special emphasis on surface ozone concentration.
    Schell B; Ackermann IJ; Hass H
    Environ Sci Technol; 2002 Jul; 36(14):3147-56. PubMed ID: 12141497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-objective analysis of ground-level ozone concentration control.
    Guariso G; Pirovano G; Volta M
    J Environ Manage; 2004 May; 71(1):25-33. PubMed ID: 15084357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human-model hybrid Korean air quality forecasting system.
    Chang LS; Cho A; Park H; Nam K; Kim D; Hong JH; Song CK
    J Air Waste Manag Assoc; 2016 Sep; 66(9):896-911. PubMed ID: 27450767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Forecasting peak daily ozone levels--I. A regression with time series errors model having a principal component trigger to fit 1991 ozone levels.
    Liu PW; Johnson R
    J Air Waste Manag Assoc; 2002 Sep; 52(9):1064-74. PubMed ID: 12269667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of anthropogenic pollutants to the increase of tropospheric ozone levels in the Oporto Metropolitan Area, Portugal since the 19th century.
    Alvim-Ferraz MC; Sousa SI; Pereira MC; Martins FG
    Environ Pollut; 2006 Apr; 140(3):516-24. PubMed ID: 16171911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.