These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 11518433)

  • 1. Involvement of osmotic cell shrinkage on the proton extrusion rate in Saccharomyces cerevisiae.
    Martínez de Marañón I; Tourdot-Marechal R; Gervais P
    Int J Food Microbiol; 2001 Aug; 67(3):241-6. PubMed ID: 11518433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Passive response of Saccharomyces cerevisiae to osmotic shifts: cell volume variations depending on the physiological state.
    Martinez de Marañon I; Marechal PA; Gervais P
    Biochem Biophys Res Commun; 1996 Oct; 227(2):519-23. PubMed ID: 8878546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Escherichia coli and Lactobacillus plantarum responses to osmotic stress.
    Poirier I; Maréchal PA; Evrard C; Gervais P
    Appl Microbiol Biotechnol; 1998 Dec; 50(6):704-9. PubMed ID: 9891930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantification of cell volume changes upon hyperosmotic stress in Saccharomyces cerevisiae.
    Petelenz-Kurdziel E; Eriksson E; Smedh M; Beck C; Hohmann S; Goksör M
    Integr Biol (Camb); 2011 Nov; 3(11):1120-6. PubMed ID: 22012314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osmotic mass transfer in the yeast Saccharomyces cerevisiae.
    Gervais P; Beney L
    Cell Mol Biol (Noisy-le-grand); 2001 Jul; 47(5):831-9. PubMed ID: 11728097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential effects of permeating and nonpermeating solutes on the fatty acid composition of Pseudomonas putida.
    Halverson LJ; Firestone MK
    Appl Environ Microbiol; 2000 Jun; 66(6):2414-21. PubMed ID: 10831419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of CIF1 (GGS1/TPS1) in osmotic stress response in Saccharomyces cerevisiae.
    Hazell BW; Kletsas S; Nevalainen H; Attfield PV
    FEBS Lett; 1997 Sep; 414(2):353-8. PubMed ID: 9315717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osmotic adjustment and the accumulation of organic solutes in whole cells and protoplasts of Saccharomyces cerevisiae.
    Meikle AJ; Reed RH; Gadd GM
    J Gen Microbiol; 1988 Nov; 134(11):3049-60. PubMed ID: 3076180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implications of FPS1 deletion and membrane ergosterol content for glycerol efflux from Saccharomyces cerevisiae.
    Toh TH; Kayingo G; van der Merwe MJ; Kilian SG; Hallsworth JE; Hohmann S; Prior BA
    FEMS Yeast Res; 2001 Dec; 1(3):205-11. PubMed ID: 12702345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osmotic significance of glycerol accumulation in exponentially growing yeasts.
    Reed RH; Chudek JA; Foster R; Gadd GM
    Appl Environ Microbiol; 1987 Sep; 53(9):2119-23. PubMed ID: 3314706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupling effects of osmotic pressure and temperature on the viability of Saccharomyces cerevisiae.
    Beney L; Marechal PA; Gervais P
    Appl Microbiol Biotechnol; 2001 Aug; 56(3-4):513-6. PubMed ID: 11549030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of osmotic pressure on the membrane fluidity of Saccharomyces cerevisiae at different physiological temperatures.
    Laroche C; Beney L; Marechal PA; Gervais P
    Appl Microbiol Biotechnol; 2001 Jul; 56(1-2):249-54. PubMed ID: 11499939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dependence of the kinetics of secondary active transports in yeast on H(+)-ATPase acidification.
    Kotyk A
    J Membr Biol; 1994 Feb; 138(1):29-35. PubMed ID: 8189429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Osmotic adjustment in the filamentous fungus Aspergillus nidulans.
    Beever RE; Laracy EP
    J Bacteriol; 1986 Dec; 168(3):1358-65. PubMed ID: 3536874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Yeast osmoregulation.
    Hohmann S; Krantz M; Nordlander B
    Methods Enzymol; 2007; 428():29-45. PubMed ID: 17875410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vacuolar H+-ATPase Protects Saccharomyces cerevisiae Cells against Ethanol-Induced Oxidative and Cell Wall Stresses.
    Charoenbhakdi S; Dokpikul T; Burphan T; Techo T; Auesukaree C
    Appl Environ Microbiol; 2016 May; 82(10):3121-3130. PubMed ID: 26994074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of dimethylsulfoxide and mercurial sulfhydryl reagents on water and solute permeability of rat kidney brush border membranes.
    van Hoek AN; de Jong MD; van Os CH
    Biochim Biophys Acta; 1990 Dec; 1030(2):203-10. PubMed ID: 2175653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Factors governing substrate-induced generation and extrusion of protons in the yeast Saccharomyces cerevisiae.
    Sigler K; Knotková A; Kotyk A
    Biochim Biophys Acta; 1981 May; 643(3):572-82. PubMed ID: 6264954
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of intracellular osmotic pressure during the initial stages of salt stress in a salt-tolerant yeast, Zygosaccharomyces rouxii.
    Yagi T
    Microbios; 1992; 70(283):93-102. PubMed ID: 1501597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterisation of proton fluxes across the cytoplasmic membrane of the yeast Saccharomyces cerevisiae.
    Haworth RS; Lemire BD; Crandall D; Cragoe EJ; Fliegel L
    Biochim Biophys Acta; 1991 Dec; 1098(1):79-89. PubMed ID: 1661160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.