BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 11518499)

  • 1. Impact of proliferative activity and tumorigenic conversion on mitochondrial function of fibroblasts in 2D and 3D culture.
    Kunz-Schughart LA; Habbersett RC; Freyer JP
    Cell Biol Int; 2001; 25(9):919-30. PubMed ID: 11518499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial function in oncogene-transfected rat fibroblasts isolated from multicellular spheroids.
    Kunz-Schughart LA; Habbersett RC; Freyer JP
    Am J Physiol; 1997 Nov; 273(5):C1487-95. PubMed ID: 9374633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decreased mitochondrial function in quiescent cells isolated from multicellular tumor spheroids.
    Freyer JP
    J Cell Physiol; 1998 Jul; 176(1):138-49. PubMed ID: 9618154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intracellular distribution of the fluorescent dye nonyl acridine orange responds to the mitochondrial membrane potential: implications for assays of cardiolipin and mitochondrial mass.
    Jacobson J; Duchen MR; Heales SJ
    J Neurochem; 2002 Jul; 82(2):224-33. PubMed ID: 12124423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compared flow cytometric analysis of mitochondria using 10-n-nonyl acridine orange and rhodamine 123.
    Benel L; Ronot X; Mounolou JC; Gaudemer F; Adolphe M
    Basic Appl Histochem; 1989; 33(2):71-80. PubMed ID: 2757602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ flow cytometric analysis of nonyl acridine orange-stained mitochondria from splenocytes.
    Ratinaud MH; Leprat P; Julien R
    Cytometry; 1988 May; 9(3):206-12. PubMed ID: 2454177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assay for apoptosis using the mitochondrial probes, Rhodamine123 and 10-N-nonyl acridine orange.
    Ferlini C; Scambia G
    Nat Protoc; 2007; 2(12):3111-4. PubMed ID: 18079710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of N-alkyl acridine orange dyes as fluorescence probes for the determination of cardiolipin.
    Kaewsuya P; Miller JD; Danielson ND; Sanjeevi J; James PF
    Anal Chim Acta; 2008 Sep; 626(2):111-8. PubMed ID: 18790112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discrimination of respiratory dysfunction in yeast mutants by confocal microscopy, image, and flow cytometry.
    Petit P; Glab N; Marie D; Kieffer H; Métézeau P
    Cytometry; 1996 Jan; 23(1):28-38. PubMed ID: 14650438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of mitochondrial content and activity with nonyl-acridine orange and rhodamine 123: flow cytometric analysis and comparison with quantitative morphometry. Comparative analysis by flow cytometry and quantitative morphometry of mitochondrial content and activity.
    Lizard G; Chardonnet Y; Chignol MC; Thivolet J
    Cytotechnology; 1990 Mar; 3(2):179-88. PubMed ID: 1366595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The impairment of mitochondrial membrane potential and mass in proliferating lymphocytes from vitamin E deficient animals is recovered by glutathione.
    Pieri C; Recchioni R; Marcheselli F; Moroni F; Marra M; Benatti C
    Cell Mol Biol (Noisy-le-grand); 1995 Sep; 41(6):755-62. PubMed ID: 8535168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proliferative activity and tumorigenic conversion: impact on cellular metabolism in 3-D culture.
    Kunz-Schughart LA; Doetsch J; Mueller-Klieser W; Groebe K
    Am J Physiol Cell Physiol; 2000 Apr; 278(4):C765-80. PubMed ID: 10751325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 10-N nonyl-acridine orange: a fluorescent probe which stains mitochondria independently of their energetic state.
    Maftah A; Petit JM; Ratinaud MH; Julien R
    Biochem Biophys Res Commun; 1989 Oct; 164(1):185-90. PubMed ID: 2478126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Staining of mitochondrial membranes with 10-nonyl acridine orange, MitoFluor Green, and MitoTracker Green is affected by mitochondrial membrane potential altering drugs.
    Keij JF; Bell-Prince C; Steinkamp JA
    Cytometry; 2000 Mar; 39(3):203-10. PubMed ID: 10685077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new method for testing cell ageing using two mitochondria specific fluorescent probes.
    Leprat P; Ratinaud MH; Julien R
    Mech Ageing Dev; 1990 Mar; 52(2-3):149-67. PubMed ID: 2325431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mouse testis cell sorting according to DNA and mitochondrial changes during spermatogenesis.
    Petit JM; Ratinaud MH; Cordelli E; Spanò M; Julien R
    Cytometry; 1995 Apr; 19(4):304-12. PubMed ID: 7796695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct analysis and significance of cardiolipin transverse distribution in mitochondrial inner membranes.
    Petit JM; Huet O; Gallet PF; Maftah A; Ratinaud MH; Julien R
    Eur J Biochem; 1994 Mar; 220(3):871-9. PubMed ID: 8143741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Translocation of active mitochondria during hamster preimplantation embryo development studied by confocal laser scanning microscopy.
    Barnett DK; Kimura J; Bavister BD
    Dev Dyn; 1996 Jan; 205(1):64-72. PubMed ID: 8770552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Age-dependent modifications of mitochondrial trans-membrane potential and mass in rat splenic lymphocytes during proliferation.
    Pieri C; Recchioni R; Moroni F
    Mech Ageing Dev; 1993 Aug; 70(3):201-12. PubMed ID: 8246634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential regulation of cyclin-dependent kinase inhibitors in monolayer and spheroid cultures of tumorigenic and nontumorigenic fibroblasts.
    LaRue KE; Bradbury EM; Freyer JP
    Cancer Res; 1998 Mar; 58(6):1305-14. PubMed ID: 9515820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.