BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 11518539)

  • 1. Probing subtle differences in the hydrogen exchange behavior of variants of the human alpha-lactalbumin molten globule using mass spectrometry.
    Last AM; Schulman BA; Robinson CV; Redfield C
    J Mol Biol; 2001 Aug; 311(4):909-19. PubMed ID: 11518539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Local and global cooperativity in the human alpha-lactalbumin molten globule.
    Quezada CM; Schulman BA; Froggatt JJ; Dobson CM; Redfield C
    J Mol Biol; 2004 Apr; 338(1):149-58. PubMed ID: 15050830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. pH-dependent stability of the human alpha-lactalbumin molten globule state: contrasting roles of the 6 - 120 disulfide and the beta-subdomain at low and neutral pH.
    Horng JC; Demarest SJ; Raleigh DP
    Proteins; 2003 Aug; 52(2):193-202. PubMed ID: 12833543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Local and long-range interactions in the molten globule state: A study of chimeric proteins of bovine and human alpha-lactalbumin.
    Mizuguchi M; Masaki K; Demura M; Nitta K
    J Mol Biol; 2000 May; 298(5):985-95. PubMed ID: 10801363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alpha-lactalbumin forms a compact molten globule in the absence of disulfide bonds.
    Redfield C; Schulman BA; Milhollen MA; Kim PS; Dobson CM
    Nat Struct Biol; 1999 Oct; 6(10):948-52. PubMed ID: 10504730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Defining the core structure of the alpha-lactalbumin molten globule state.
    Demarest SJ; Boice JA; Fairman R; Raleigh DP
    J Mol Biol; 1999 Nov; 294(1):213-21. PubMed ID: 10556040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vibrational Raman optical activity of alpha-lactalbumin: comparison with lysozyme, and evidence for native tertiary folds in molten globule states.
    Wilson G; Ford SJ; Cooper A; Hecht L; Wen ZQ; Barron LD
    J Mol Biol; 1995 Dec; 254(4):747-60. PubMed ID: 7500347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Different subdomains are most protected from hydrogen exchange in the molten globule and native states of human alpha-lactalbumin.
    Schulman BA; Redfield C; Peng ZY; Dobson CM; Kim PS
    J Mol Biol; 1995 Nov; 253(5):651-7. PubMed ID: 7473740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein dissection experiments reveal key differences in the equilibrium folding of alpha-lactalbumin and the calcium binding lysozymes.
    Chowdhury FA; Fairman R; Bi Y; Rigotti DJ; Raleigh DP
    Biochemistry; 2004 Aug; 43(31):9961-7. PubMed ID: 15287723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular basis of cooperativity in protein folding. V. Thermodynamic and structural conditions for the stabilization of compact denatured states.
    Xie D; Freire E
    Proteins; 1994 Aug; 19(4):291-301. PubMed ID: 7984625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molten globule of bovine alpha-lactalbumin at neutral pH induced by heat, trifluoroethanol, and oleic acid: a comparative analysis by circular dichroism spectroscopy and limited proteolysis.
    Polverino de Laureto P; Frare E; Gottardo R; Fontana A
    Proteins; 2002 Nov; 49(3):385-97. PubMed ID: 12360528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cooperative folding of the isolated alpha-helical domain of hen egg-white lysozyme.
    Bai P; Peng Z
    J Mol Biol; 2001 Nov; 314(2):321-9. PubMed ID: 11718563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hierarchical unfolding of the alpha-lactalbumin molten globule: presence of a compact intermediate without a unique tertiary fold.
    Chakraborty S; Peng Z
    J Mol Biol; 2000 Apr; 298(1):1-6. PubMed ID: 10756101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energetic basis of structural stability in the molten globule state: alpha-lactalbumin.
    Griko YV
    J Mol Biol; 2000 Apr; 297(5):1259-68. PubMed ID: 10764588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Side-chain conformational disorder in a molten globule: molecular dynamics simulations of the A-state of human alpha-lactalbumin.
    Smith LJ; Dobson CM; van Gunsteren WF
    J Mol Biol; 1999 Mar; 286(5):1567-80. PubMed ID: 10064716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploration of partially unfolded states of human alpha-lactalbumin by molecular dynamics simulation.
    Paci E; Smith LJ; Dobson CM; Karplus M
    J Mol Biol; 2001 Feb; 306(2):329-47. PubMed ID: 11237603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of individual residues to formation of the native-like tertiary topology in the alpha-lactalbumin molten globule.
    Song J; Bai P; Luo L; Peng ZY
    J Mol Biol; 1998 Jul; 280(1):167-74. PubMed ID: 9653039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A protein dissection study demonstrates that two specific hydrophobic clusters play a key role in stabilizing the core structure of the molten globule state of human alpha-lactalbumin.
    Demarest SJ; Horng JC; Raleigh DP
    Proteins; 2001 Feb; 42(2):237-42. PubMed ID: 11119648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A specific hydrophobic core in the alpha-lactalbumin molten globule.
    Wu LC; Kim PS
    J Mol Biol; 1998 Jul; 280(1):175-82. PubMed ID: 9653040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Localized nature of the transition-state structure in goat alpha-lactalbumin folding.
    Saeki K; Arai M; Yoda T; Nakao M; Kuwajima K
    J Mol Biol; 2004 Aug; 341(2):589-604. PubMed ID: 15276846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.