BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 11518564)

  • 21. Preventing metal-mediated oxidative DNA damage with selenium compounds.
    Battin EE; Zimmerman MT; Ramoutar RR; Quarles CE; Brumaghim JL
    Metallomics; 2011 May; 3(5):503-12. PubMed ID: 21286651
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bilirubin-Cu(II) complex degrades DNA.
    Asad SF; Singh S; Ahmad A; Hadi SM
    Biochim Biophys Acta; 1999 Aug; 1428(2-3):201-8. PubMed ID: 10434037
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Pro- and antioxidant activity of bilirubin, EPR study].
    Shengeliia MSh; Chikvaidze EN; Sanikidze TV
    Georgian Med News; 2010 Mar; (180):88-92. PubMed ID: 20413824
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hydroxycinnamic acids as DNA-cleaving agents in the presence of Cu(II) ions: mechanism, structure-activity relationship, and biological implications.
    Fan GJ; Jin XL; Qian YP; Wang Q; Yang RT; Dai F; Tang JJ; Shang YJ; Cheng LX; Yang J; Zhou B
    Chemistry; 2009 Nov; 15(46):12889-99. PubMed ID: 19847825
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Antioxidant protective effect of flavonoids on linoleic acid peroxidation induced by copper(II)/ascorbic acid system.
    Beker BY; Bakır T; Sönmezoğlu I; Imer F; Apak R
    Chem Phys Lipids; 2011 Nov; 164(8):732-9. PubMed ID: 21925488
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prooxidant action of knipholone anthrone: copper dependent reactive oxygen species generation and DNA damage.
    Habtemariam S; Dagne E
    Food Chem Toxicol; 2009 Jul; 47(7):1490-4. PubMed ID: 19345716
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of redox active copper(II) on antioxidant properties of the flavonoid baicalein: DNA protection under Cu(II)-Fenton reaction and Cu(II)-ascorbate system conditions.
    Jomova K; Cvik M; Lauro P; Valko M; Cizmar E; Alomar SY; Alwasel SH; Oleksak P; Chrienova Z; Nepovimova E; Kuca K; Rhodes CJ
    J Inorg Biochem; 2023 Aug; 245():112244. PubMed ID: 37178556
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hydroxyl radical formation from Cu(II)-trolox mixtures: insights into the pro-oxidant properties of alpha-tocopherol.
    Burkitt MJ; Milne L
    FEBS Lett; 1996 Jan; 379(1):51-4. PubMed ID: 8566228
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The abilities of selenium dioxide and selenite ion to coordinate DNA-bound metal ions and decrease oxidative DNA damage.
    Hart WE; Marczak SP; Kneller AR; French RA; Morris DL
    J Inorg Biochem; 2013 Aug; 125():1-8. PubMed ID: 23628661
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Theoretical studies of biliverdin: energetics of the reduction pathways to bilirubin.
    Zahedi M; Kamalipour M; Safari N
    J Mol Model; 2002 Apr; 8(4):113-8. PubMed ID: 12111390
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prooxidant action of rosmarinic acid: transition metal-dependent generation of reactive oxygen species.
    Murakami K; Haneda M; Qiao S; Naruse M; Yoshino M
    Toxicol In Vitro; 2007 Jun; 21(4):613-7. PubMed ID: 17267171
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A novel gold nanocluster-based fluorometric biosensor for measuring prooxidant activity with a large Stokes shift.
    Akyüz E; Şen FB; Bener M; Başkan KS; Apak R
    Talanta; 2020 Feb; 208():120425. PubMed ID: 31816696
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bilirubin benefits: cellular protection by a biliverdin reductase antioxidant cycle.
    Sedlak TW; Snyder SH
    Pediatrics; 2004 Jun; 113(6):1776-82. PubMed ID: 15173506
    [No Abstract]   [Full Text] [Related]  

  • 34. Prooxidant action of furanone compounds: implication of reactive oxygen species in the metal-dependent strand breaks and the formation of 8-hydroxy-2'-deoxyguanosine in DNA.
    Murakami K; Haneda M; Makino T; Yoshino M
    Food Chem Toxicol; 2007 Jul; 45(7):1258-62. PubMed ID: 17316945
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Copper increases the damage to DNA and proteins caused by reactive oxygen species.
    Cervantes-Cervantes MP; Calderón-Salinas JV; Albores A; Muñoz-Sánchez JL
    Biol Trace Elem Res; 2005 Mar; 103(3):229-48. PubMed ID: 15784956
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Antioxidant properties of the melatonin metabolite N1-acetyl-5-methoxykynuramine (AMK): scavenging of free radicals and prevention of protein destruction.
    Ressmeyer AR; Mayo JC; Zelosko V; Sáinz RM; Tan DX; Poeggeler B; Antolín I; Zsizsik BK; Reiter RJ; Hardeland R
    Redox Rep; 2003; 8(4):205-13. PubMed ID: 14599344
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prooxidant property of green tea polyphenols epicatechin and epigallocatechin-3-gallate: implications for anticancer properties.
    Azam S; Hadi N; Khan NU; Hadi SM
    Toxicol In Vitro; 2004 Oct; 18(5):555-61. PubMed ID: 15251172
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stereospecific haem cleavage. A model for the formation of bile-pigment isomers in vivo and in vitro.
    Brown SB
    Biochem J; 1976 Oct; 159(1):23-7. PubMed ID: 999640
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Binding of fatty acids facilitates oxidation of cysteine-34 and converts copper-albumin complexes from antioxidants to prooxidants.
    Gryzunov YA; Arroyo A; Vigne JL; Zhao Q; Tyurin VA; Hubel CA; Gandley RE; Vladimirov YA; Taylor RN; Kagan VE
    Arch Biochem Biophys; 2003 May; 413(1):53-66. PubMed ID: 12706341
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Site-specific DNA damage induced by NADH in the presence of copper(II): role of active oxygen species.
    Oikawa S; Kawanishi S
    Biochemistry; 1996 Apr; 35(14):4584-90. PubMed ID: 8605209
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.