BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 11519253)

  • 21. Mg2+ control of respiration in isolated rat liver mitochondria.
    Panov A; Scarpa A
    Biochemistry; 1996 Oct; 35(39):12849-56. PubMed ID: 8841128
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Effect of ATP-sensitive potassium channel modulators and intermittent hypoxia on mitochondrial respiration during stress].
    Tkachenko HM; Moĭbenko OO; Kurhaliuk NM
    Ukr Biokhim Zh (1999); 2003; 75(6):115-22. PubMed ID: 15143528
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Mechanism of reciprocal effects of acetylcholine on oxidation of alpha-ketoglutarate and succinate in heart and liver mitochondria. Factors influencing detection of the acetylcholine effect].
    Doliba MM; Vatamaniuk MZ; Mrvan D; Shostakovs'ka IV; Kondrashova MM
    Ukr Biokhim Zh (1978); 1994; 66(1):41-9. PubMed ID: 7974837
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Effect of a sublethal dose of sodium nitrite on respiration and oxidative phosphorylation in the rat liver mitochondria].
    Babs'kyĭ AM; Stefankiv IuS; Korobov VM
    Ukr Biokhim Zh (1978); 1993; 65(6):106-8. PubMed ID: 8048174
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differential inhibitory effect of long-chain acyl-CoA esters on succinate and glutamate transport into rat liver mitochondria and its possible implications for long-chain fatty acid oxidation defects.
    Ventura FV; Ruiter J; Ijlst L; de Almeida IT; Wanders RJ
    Mol Genet Metab; 2005 Nov; 86(3):344-52. PubMed ID: 16176879
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Role of calcium ions in the mechanism of action of acetylcholine on energy metabolism in rat liver mitochondria].
    Vatamaniuk MZ; Artym VV; Kuka OB; Doliba MM; Shostakovs'ka IV
    Ukr Biokhim Zh (1978); 1996; 68(5):9-14. PubMed ID: 9229860
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functional argument for the existence of an avian nitric oxide synthase in muscle mitochondria: effect of cold acclimation.
    Rey B; Roussel D; Teulier L; Eyenga P; Degletagne C; Belouze M; Duchamp C
    FEBS Lett; 2011 Jan; 585(1):173-7. PubMed ID: 21095190
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Effect of intermittent hypoxic hypoxia on energy supply of rat skeletal muscle during adaptation to physical load].
    Havenauskas BL; Nosar VI; Kurhaliuk NM; Nazarenko AI; Bratus' LV; Shuvalova IM; Man'kovs'ka IM
    Ukr Biokhim Zh (1999); 2005; 77(3):120-6. PubMed ID: 16566138
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [The modification of nitric oxide production by exogenous substrates of Krebs cycle during acute hypoxia].
    Kurhaliuk NM; Kotsiuruba AV; Sahach VF
    Fiziol Zh (1994); 2005; 51(4):20-8. PubMed ID: 16201146
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mitochondrial ryanodine-sensitive Ca
    Kupynyak NI; Ikkert OV; Shlykov SG; Babich LG; Manko VV
    Cell Biochem Funct; 2017 Jan; 35(1):42-49. PubMed ID: 28052355
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of calcium signaling in the activation of mitochondrial nitric oxide synthase and citric acid cycle.
    Traaseth N; Elfering S; Solien J; Haynes V; Giulivi C
    Biochim Biophys Acta; 2004 Jul; 1658(1-2):64-71. PubMed ID: 15282176
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Calcium indirectly increases the control exerted by the adenine nucleotide translocator over 2-oxoglutarate oxidation in rat heart mitochondria.
    Mildaziene V; Baniene R; Nauciene Z; Bakker BM; Brown GC; Westerhoff HV; Kholodenko BN
    Arch Biochem Biophys; 1995 Dec; 324(1):130-4. PubMed ID: 7503547
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Effect of acute hypoxic hypoxia on rat liver mitochondrial respiration].
    Braĭlovskaia IV; Aleksandrova AE; Slepneva LV
    Vopr Med Khim; 1980; 26(4):435-8. PubMed ID: 7456378
    [TBL] [Abstract][Full Text] [Related]  

  • 34. S-[(1 and 2)-phenyl-2-hydroxyethyl]cysteine-induced alterations in renal mitochondrial function in male Fischer-344 rats.
    Chakrabarti SK; Denniel C; Malick MA; Bai C
    Toxicol Appl Pharmacol; 1998 Jul; 151(1):123-34. PubMed ID: 9705895
    [TBL] [Abstract][Full Text] [Related]  

  • 35. EXPERIMENTAL SUBSTANTIATION OF PERMEABILIZED HEPATOCYTES MODEL FOR INVESTIGATION OF MITOCHONDRIA IN SITU RESPIRATION.
    Merlavsky VM; Manko BO; Ikkert OV; Manko VV
    Ukr Biochem J; 2015; 87(6):113-21. PubMed ID: 27025065
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nitric oxide synthase in porcine heart mitochondria: evidence for low physiological activity.
    French S; Giulivi C; Balaban RS
    Am J Physiol Heart Circ Physiol; 2001 Jun; 280(6):H2863-7. PubMed ID: 11356646
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of calcium on NADH and succinate oxidation by rat heart submitochondrial particles.
    Panov AV; Scaduto RC
    Arch Biochem Biophys; 1995 Feb; 316(2):815-20. PubMed ID: 7864638
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Protective effect of L-arginine against stress-induced gastric mucosal lesions in rats and its relation to nitric oxide-mediated inhibition of neutrophil infiltration.
    Ohta Y; Nishida K
    Pharmacol Res; 2001 Jun; 43(6):535-41. PubMed ID: 11419962
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Correction of mitochondrial respiration processes in rats with different resistance to hypoxia under stress by modulators of ATP-sensitive potassium channels].
    Kurgaliuk NN; Tkachenko GM
    Biomed Khim; 2006; 52(6):556-67. PubMed ID: 17288247
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ca(2+) rise within a narrow window of concentration prevents functional injury of mitochondria exposed to hypoxia/reoxygenation by increasing antioxidative defence.
    Schild L; Plumeyer F; Reiser G
    FEBS J; 2005 Nov; 272(22):5844-52. PubMed ID: 16279948
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.