These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 1151987)

  • 21. Metabolism of lynestrenol: characterization of 3-hydroxylation using rabbit liver microsomes in vitro.
    Yasuda J; Honjo H; Okada H
    J Steroid Biochem; 1984 Dec; 21(6):777-80. PubMed ID: 6527542
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Conformational energy differences between side chain alkylated analogues of the hallucinogen 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane.
    Weintraub HJ; Nichols DE; Makriyannis A; Fesik SW
    J Med Chem; 1980 Mar; 23(3):339-41. PubMed ID: 7365752
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Conversion of N-hydroxyamphetamine to phenylacetone oxime by rat liver microsomes.
    Matsumoto RM; Cho AK
    Biochem Pharmacol; 1982 Jan; 31(1):105-8. PubMed ID: 7059340
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chemical conversion of the psychotomimetic amine 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane to 5-hydroxy-2,6-dimethylindole.
    Zweig JS; Castagnoli N
    J Med Chem; 1974 Jul; 17(7):747-9. PubMed ID: 4836406
    [No Abstract]   [Full Text] [Related]  

  • 25. The N-hydroxylation of phentermine (2-methyl-1-phenylisopropylamine) by rabbit liver microsomes.
    Cho AK; Lindeke B; Hodshon BJ
    Res Commun Chem Pathol Pharmacol; 1972 Nov; 4(3):519-28. PubMed ID: 4638590
    [No Abstract]   [Full Text] [Related]  

  • 26. Intramolecular deuterium isotope effect and enantiotopic differentiation in oxidative demethylation of chiral [monomethyl-d3]methoxychlor in rat liver microsomes.
    Ichinose R; Kurihara N
    Biochem Pharmacol; 1987 Nov; 36(21):3751-6. PubMed ID: 3675629
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metabolic N- and alpha-C-oxidation of norephedrine by rabbit liver microsomal fractions and synthesis of the metabolic pdocuts.
    Beckett AH; Jones GR; Al-Sarraj S
    J Pharm Pharmacol; 1974 Dec; 26(12):945-51. PubMed ID: 4156859
    [No Abstract]   [Full Text] [Related]  

  • 28. Metabolism-dependent inhibition of CYP3A4 by lapatinib: evidence for formation of a metabolic intermediate complex with a nitroso/oxime metabolite formed via a nitrone intermediate.
    Barbara JE; Kazmi F; Parkinson A; Buckley DB
    Drug Metab Dispos; 2013 May; 41(5):1012-22. PubMed ID: 23404373
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The mechanism of microsomal deamination: heavy isotope studies.
    Parli CJ; McMahon RE
    Drug Metab Dispos; 1973; 1(1):337-41. PubMed ID: 4149402
    [No Abstract]   [Full Text] [Related]  

  • 30. Chemical and stereochemical aspects of propranolol metabolism. Diastereomeric 1-(1-hydroxy-2-propylamino)-3-(1-naphthoxy)-2-propanols produced by rat liver microsomal omega-hydroxylation.
    Shetty HU; Nelson WL
    J Med Chem; 1986 Oct; 29(10):2004-8. PubMed ID: 3761318
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hydroxylation of amphetamine to parahydroxyamphetamine by rat liver microsomes.
    Jonsson JA
    Biochem Pharmacol; 1974 Nov; 23(22):3191-7. PubMed ID: 4441410
    [No Abstract]   [Full Text] [Related]  

  • 32. Activation energies of alpha-C-oxidation and N-oxidation of N-alkyl-substituted amphetamines by rat liver microsomes. Stereochemistry and deuterium isotope effects.
    Henderson PT; Vree TB; van Ginneken CA; van Rossum JM
    Xenobiotica; 1974 Feb; 4(2):121-30. PubMed ID: 4828797
    [No Abstract]   [Full Text] [Related]  

  • 33. Hydroxylation of 4,4'-methylenebis(2-chloroaniline) by canine, guinea pig, and rat liver microsomes.
    Chen TH; Kuslikis BI; Braselton WE
    Drug Metab Dispos; 1989; 17(4):406-13. PubMed ID: 2571481
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metabolism of the cis and trans isomers of N-nitroso-2,6-dimethylmorpholine and their deuterated analogs by liver microsomes of rat and hamster.
    Kokkinakis D; Hollenberg PF; Scarpelli DG
    Carcinogenesis; 1984 Aug; 5(8):1009-14. PubMed ID: 6744510
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Species variations in the metabolism of acetophenone oxime by hepatic enzymes.
    Sternson LA; Hes J
    Pharmacology; 1975; 13(3):234-40. PubMed ID: 1153506
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sequential metabolism of secondary alkyl amines to metabolic-intermediate complexes: opposing roles for the secondary hydroxylamine and primary amine metabolites of desipramine, (s)-fluoxetine, and N-desmethyldiltiazem.
    Hanson KL; VandenBrink BM; Babu KN; Allen KE; Nelson WL; Kunze KL
    Drug Metab Dispos; 2010 Jun; 38(6):963-72. PubMed ID: 20200233
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metabolic kinetics of pseudoracemic propranolol in human liver microsomes. Enantioselectivity and quinidine inhibition.
    Marathe PH; Shen DD; Nelson WL
    Drug Metab Dispos; 1994; 22(2):237-47. PubMed ID: 8013280
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regiochemistry and substrate stereoselectivity of O-demethylation of verapamil in the presence of the microsomal fraction from rat and human liver.
    Nelson WL; Olsen LD; Beitner DB; Pallow RJ
    Drug Metab Dispos; 1988; 16(2):184-8. PubMed ID: 2898330
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vitro metabolism of amphetamine: an apparent enantiomeric interaction.
    Gal J; Wright J; Cho AK
    Res Commun Chem Pathol Pharmacol; 1976 Nov; 15(3):525-40. PubMed ID: 996364
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Substituent branching in phenethylamine-type hallucinogens: a comparison of 1-[2,5-dimethoxy-4-(2-butyl)phenyl]-2-aminopropane and 1-[2,5-dimethoxy-4-(2-methylpropyl)phenyl]-2-aminopropane.
    Oberlender RA; Kothari PJ; Nichols DE; Zabik JE
    J Med Chem; 1984 Jun; 27(6):788-92. PubMed ID: 6737421
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.