These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 11519996)

  • 1. Potential application of catalase-peroxidase from Comamonas terrigena N3H in the biodegradation of phenolic compounds.
    Zámocký M; Godocíková J; Koller F; Polek B
    Antonie Van Leeuwenhoek; 2001 Jun; 79(2):109-17. PubMed ID: 11519996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidative stress-induced expression of catalases in Comamonas terrigena.
    Zámocký M; Polek B; Godocíková J; Koller F
    Folia Microbiol (Praha); 2002; 47(3):235-40. PubMed ID: 12094731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of catalases by Comamonas spp. and resistance to oxidative stress.
    Godocíková J; Bohácová V; Zámocký M; Polek B
    Folia Microbiol (Praha); 2005; 50(2):113-8. PubMed ID: 16110914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolates of Comamonas spp. exhibiting catalase and peroxidase activities and diversity of their responses to oxidative stress.
    Bucková M; Godocíková J; Zámocký M; Polek B
    Ecotoxicol Environ Saf; 2010 Oct; 73(7):1511-6. PubMed ID: 20678795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The expression and diversity of catalases in isolates of genus Comamonas in response to the oxidative stress of a polluted environment.
    Bohácová V; Zámocký M; Godocíková J; Bucková M; Polek B
    Curr Microbiol; 2006 Nov; 53(5):430-4. PubMed ID: 17066334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression, purification, and sequence analysis of catalase-1 from the soil bacterium Comamonas terrigena N3H.
    Zámocký M; Godocíková J; Gasperík J; Koller F; Polek B
    Protein Expr Purif; 2004 Jul; 36(1):115-23. PubMed ID: 15177292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of some factors of polluted environment on catalase responses and resistance of microbial isolates against toxic oxidative stress.
    Polek B; Godočíková J
    Curr Microbiol; 2012 Oct; 65(4):345-9. PubMed ID: 22706798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradation of the mixtures of 4-chlorophenol and phenol by Comamonas testosteroni CPW301.
    Bae HS; Lee JM; Kim YB; Lee ST
    Biodegradation; 1996-1997; 7(6):463-9. PubMed ID: 9188195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enrichment, isolation and characterization of dialkyl sulfosuccinate degrading bacteria Comamonas terrigena N3H and Comamonas terrigena N1C.
    Proksová M; Augustín J; Vrbanová A
    Folia Microbiol (Praha); 1997; 42(6):635-9. PubMed ID: 9508556
    [No Abstract]   [Full Text] [Related]  

  • 10. Lag period of 14CO2 evolution from dioctyl sulpho[2,3-14C]succinate in relation to adaptation of bacterium, Comamonas terrigena, to dialkyl esters of sulphosuccinate.
    Godocíková J; Ferianc P; Polek B
    Biotechnol Lett; 2004 Oct; 26(19):1497-500. PubMed ID: 15604786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Screening of bacterial isolates from polluted soils exhibiting catalase and peroxidase activity and diversity of their responses to oxidative stress.
    Bucková M; Godocíková J; Zámocký M; Polek B
    Curr Microbiol; 2010 Oct; 61(4):241-7. PubMed ID: 20145932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation and characterization of phenol degrading yeast.
    Patel R; Rajkumar S
    J Basic Microbiol; 2009 Apr; 49(2):216-9. PubMed ID: 18798176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenols in anaerobic digestion processes and inhibition of ammonia oxidising bacteria (AOB) in soil.
    Levén L; Nyberg K; Korkea-Aho L; Schnürer A
    Sci Total Environ; 2006 Jul; 364(1-3):229-38. PubMed ID: 16125214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation and characterization of dibenzofuran-degrading Comamonas sp. strains isolated from white clover roots.
    Wang Y; Yamazoe A; Suzuki S; Liu CT; Aono T; Oyaizu H
    Curr Microbiol; 2004 Oct; 49(4):288-94. PubMed ID: 15386118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plant uptake and in-soil degradation of PCB-5 under varying cropping conditions.
    Li H; Liu L; Lin C; Wang S
    Chemosphere; 2011 Aug; 84(7):943-9. PubMed ID: 21724228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth and antioxidant response in Ceratophyllum demersum L. under sodium dodecyl sulfate (SDS), phenol and joint stress.
    Liu N; Wu Z
    Ecotoxicol Environ Saf; 2018 Nov; 163():188-195. PubMed ID: 30053589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Salt-tolerant phenol-degrading microorganisms isolated from Amazonian soil samples.
    Bastos AE; Moon DH; Rossi A; Trevors JT; Tsai SM
    Arch Microbiol; 2000 Nov; 174(5):346-52. PubMed ID: 11131025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth response of Avena sativa in amino-acids-rich soils converted from phenol-contaminated soils by Corynebacterium glutamicum.
    Lee SY; Kim BN; Choi YW; Yoo KS; Kim YH; Min J
    J Microbiol Biotechnol; 2012 Apr; 22(4):541-6. PubMed ID: 22534303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradation of phenolic pollutants and bioaugmentation strategies: A review of current knowledge and future perspectives.
    Wang J; Zhang L; He Y; Ji R
    J Hazard Mater; 2024 May; 469():133906. PubMed ID: 38430590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodegradation of 2,4,6-tribromophenol by Ochrobactrum sp. strain TB01.
    Yamada T; Takahama Y; Yamada Y
    Biosci Biotechnol Biochem; 2008 May; 72(5):1264-71. PubMed ID: 18460800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.