These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 11520316)

  • 1. Involvement of the thalamocortical system in epileptic loss of consciousness.
    Kostopoulos GK
    Epilepsia; 2001; 42 Suppl 3():13-9. PubMed ID: 11520316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Medium-voltage 5-9-Hz oscillations give rise to spike-and-wave discharges in a genetic model of absence epilepsy: in vivo dual extracellular recording of thalamic relay and reticular neurons.
    Pinault D; Vergnes M; Marescaux C
    Neuroscience; 2001; 105(1):181-201. PubMed ID: 11483311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct behavioral and EEG topographic correlates of loss of consciousness in absences.
    Vuilleumier P; Assal F; Blanke O; Jallon P
    Epilepsia; 2000 Jun; 41(6):687-93. PubMed ID: 10840400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thalamo-cortical mechanisms of sleep spindles and spike-wave discharges in rat model of absence epilepsy (a review).
    Sitnikova E
    Epilepsy Res; 2010 Mar; 89(1):17-26. PubMed ID: 19828296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electroencephalographic characterization of spike-wave discharges in cortex and thalamus in WAG/Rij rats.
    Sitnikova E; van Luijtelaar G
    Epilepsia; 2007 Dec; 48(12):2296-311. PubMed ID: 18196621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cortical and subcortical generators of normal and abnormal rhythmicity.
    McCormick DA
    Int Rev Neurobiol; 2002; 49():99-114. PubMed ID: 12040908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Corticothalamic 5-9 Hz oscillations are more pro-epileptogenic than sleep spindles in rats.
    Pinault D; Slézia A; Acsády L
    J Physiol; 2006 Jul; 574(Pt 1):209-27. PubMed ID: 16627566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase-dependent modulation of cortical and thalamic sensory responses during spike-and-wave discharges.
    Williams MS; Lecas S; Charpier S; Mahon S
    Epilepsia; 2020 Feb; 61(2):330-341. PubMed ID: 31912497
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thalamic lesions in a genetic rat model of absence epilepsy: dissociation between spike-wave discharges and sleep spindles.
    Meeren HK; Veening JG; Möderscheim TA; Coenen AM; van Luijtelaar G
    Exp Neurol; 2009 May; 217(1):25-37. PubMed ID: 19416679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generalized epilepsy with bilateral synchronous spike and wave discharge. New findings concerning its physiological mechanisms.
    Gloor P
    Electroencephalogr Clin Neurophysiol Suppl; 1978; (34):245-9. PubMed ID: 108073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thalamocortical relationships and network synchronization in a new genetic model "in mirror" for absence epilepsy.
    Gigout S; Louvel J; Rinaldi D; Martin B; Pumain R
    Brain Res; 2013 Aug; 1525():39-52. PubMed ID: 23743261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrative properties and transfer function of cortical neurons initiating absence seizures in a rat genetic model.
    Williams MS; Altwegg-Boussac T; Chavez M; Lecas S; Mahon S; Charpier S
    J Physiol; 2016 Nov; 594(22):6733-6751. PubMed ID: 27311433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the activity of the corticostriatal networks during spike-and-wave discharges in a genetic model of absence epilepsy.
    Slaght SJ; Paz T; Chavez M; Deniau JM; Mahon S; Charpier S
    J Neurosci; 2004 Jul; 24(30):6816-25. PubMed ID: 15282287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. fMRI of generalized absence status epilepticus in conscious marmoset monkeys reveals corticothalamic activation.
    Tenney JR; Marshall PC; King JA; Ferris CF
    Epilepsia; 2004 Oct; 45(10):1240-7. PubMed ID: 15461678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous EEG, fMRI, and behavior in typical childhood absence seizures.
    Berman R; Negishi M; Vestal M; Spann M; Chung MH; Bai X; Purcaro M; Motelow JE; Danielson N; Dix-Cooper L; Enev M; Novotny EJ; Constable RT; Blumenfeld H
    Epilepsia; 2010 Oct; 51(10):2011-22. PubMed ID: 20608963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Persistence of cortical sensory processing during absence seizures in human and an animal model: evidence from EEG and intracellular recordings.
    Chipaux M; Vercueil L; Kaminska A; Mahon S; Charpier S
    PLoS One; 2013; 8(3):e58180. PubMed ID: 23483991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sleep oscillations developing into seizures in corticothalamic systems.
    Steriade M; Amzica F
    Epilepsia; 2003; 44 Suppl 12():9-20. PubMed ID: 14641557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regional specificity of cortico-thalamic coupling strength and directionality during waxing and waning of spike and wave discharges.
    Lüttjohann A; Pape HC
    Sci Rep; 2019 Feb; 9(1):2100. PubMed ID: 30765744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolving concepts on the pathophysiology of absence seizures: the cortical focus theory.
    Meeren H; van Luijtelaar G; Lopes da Silva F; Coenen A
    Arch Neurol; 2005 Mar; 62(3):371-6. PubMed ID: 15767501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spike-and-wave discharges of absence seizures as a transformation of sleep spindles: the continuing development of a hypothesis.
    Kostopoulos GK
    Clin Neurophysiol; 2000 Sep; 111 Suppl 2():S27-38. PubMed ID: 10996552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.