These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 11520499)

  • 1. Efficient solution of ordinary differential equations modeling electrical activity in cardiac cells.
    Sundnes J; Lines GT; Tveito A
    Math Biosci; 2001 Aug; 172(2):55-72. PubMed ID: 11520499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An operator splitting method for solving the bidomain equations coupled to a volume conductor model for the torso.
    Sundnes J; Lines GT; Tveito A
    Math Biosci; 2005 Apr; 194(2):233-48. PubMed ID: 15854678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the performance of an implicit-explicit Runge-Kutta method in models of cardiac electrical activity.
    Spiteri RJ; Dean RC
    IEEE Trans Biomed Eng; 2008 May; 55(5):1488-95. PubMed ID: 18440894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved discretisation and linearisation of active tension in strongly coupled cardiac electro-mechanics simulations.
    Sundnes J; Wall S; Osnes H; Thorvaldsen T; McCulloch AD
    Comput Methods Biomech Biomed Engin; 2014; 17(6):604-15. PubMed ID: 22800534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of non-standard solvers for ODEs describing cellular reactions in the heart.
    Maclachlan MC; Sundnes J; Spiteri RJ
    Comput Methods Biomech Biomed Engin; 2007 Oct; 10(5):317-26. PubMed ID: 17852182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Soft tissue modelling of cardiac fibres for use in coupled mechano-electric simulations.
    Whiteley JP; Bishop MJ; Gavaghan DJ
    Bull Math Biol; 2007 Oct; 69(7):2199-225. PubMed ID: 17453303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-stepping techniques to enable the simulation of bursting behavior in a physiologically realistic computational islet.
    Khuvis S; Gobbert MK; Peercy BE
    Math Biosci; 2015 May; 263():1-17. PubMed ID: 25688913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cardiac electrophysiological experiments in numero, Part II: Models of electrophysiological processes.
    Malik M; Camm AJ
    Pacing Clin Electrophysiol; 1991 Nov; 14(11 Pt 1):1648-71. PubMed ID: 1721155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multigrid block preconditioning for a coupled system of partial differential equations modeling the electrical activity in the heart.
    Sundnes J; Lines GT; Mardal KA; Tveito A
    Comput Methods Biomech Biomed Engin; 2002 Dec; 5(6):397-409. PubMed ID: 12468421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulating Cardiac Electrophysiology Using Unstructured All-Hexahedra Spectral Elements.
    Cuccuru G; Fotia G; Maggio F; Southern J
    Biomed Res Int; 2015; 2015():473279. PubMed ID: 26583112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LASSIE: simulating large-scale models of biochemical systems on GPUs.
    Tangherloni A; Nobile MS; Besozzi D; Mauri G; Cazzaniga P
    BMC Bioinformatics; 2017 May; 18(1):246. PubMed ID: 28486952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic code generation for solvers of cardiac cellular membrane dynamics in GPUs.
    Amorim RM; Rocha BM; Campos FO; Dos Santos RW
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2666-9. PubMed ID: 21096194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A finite volume method for modeling discontinuous electrical activation in cardiac tissue.
    Trew M; Le Grice I; Smaill B; Pullan A
    Ann Biomed Eng; 2005 May; 33(5):590-602. PubMed ID: 15981860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic numerical solver selection from a repository of pre-run simulations.
    Claeys P; Vanrolleghem PA; De Baets B
    Water Sci Technol; 2009; 59(5):893-906. PubMed ID: 19273888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A high-resolution computational model of the deforming human heart.
    Gurev V; Pathmanathan P; Fattebert JL; Wen HF; Magerlein J; Gray RA; Richards DF; Rice JJ
    Biomech Model Mechanobiol; 2015 Aug; 14(4):829-49. PubMed ID: 25567753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [One-dimensional time-dependent model of the cardiac pacemaker activity induced by the mechanoelectric feedback in a thermo-electro-mechanical background].
    Collet A; Desaive T; Dauby PC
    Ann Cardiol Angeiol (Paris); 2012 Jun; 61(3):156-61. PubMed ID: 22681984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive step ODE algorithms for the 3D simulation of electric heart activity with graphics processing units.
    Garcia-Molla VM; Liberos A; Vidal A; Guillem MS; Millet J; Gonzalez A; Martinez-Zaldivar FJ; Climent AM
    Comput Biol Med; 2014 Jan; 44():15-26. PubMed ID: 24377685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A collocation--Galerkin finite element model of cardiac action potential propagation.
    Rogers JM; McCulloch AD
    IEEE Trans Biomed Eng; 1994 Aug; 41(8):743-57. PubMed ID: 7927397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of macroscopic models of excitation and force propagation in the heart.
    Sachse FB; Blümcke LG; Mohr M; Glänzel K; Häfner J; Riedel C; Seemann G; Skipa O; Werner CD; Dössel O
    Biomed Tech (Berl); 2002; 47 Suppl 1 Pt 1():217-20. PubMed ID: 12451821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation Study on Effects of Order and Step Size of Runge-Kutta Methods that Solve Contagious Disease and Tumor Models.
    Wang Z; Wang Q; Klinke DJ
    J Comput Sci Syst Biol; 2016 Sep; 9(5):163-172. PubMed ID: 28220053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.