BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 11520895)

  • 1. Dependence of excitotoxic neurodegeneration on mitochondrial aconitase inactivation.
    Li QY; Pedersen C; Day BJ; Patel M
    J Neurochem; 2001 Aug; 78(4):746-55. PubMed ID: 11520895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Requirement for superoxide in excitotoxic cell death.
    Patel M; Day BJ; Crapo JD; Fridovich I; McNamara JO
    Neuron; 1996 Feb; 16(2):345-55. PubMed ID: 8789949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An alternative Ca2+-dependent mechanism of neuroprotection by the metalloporphyrin class of superoxide dismutase mimetics.
    Tauskela JS; Brunette E; O'Reilly N; Mealing G; Comas T; Gendron TF; Monette R; Morley P
    FASEB J; 2005 Oct; 19(12):1734-6. PubMed ID: 16081500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial superoxide production in kainate-induced hippocampal damage.
    Liang LP; Ho YS; Patel M
    Neuroscience; 2000; 101(3):563-70. PubMed ID: 11113305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuroprotection from delayed postischemic administration of a metalloporphyrin catalytic antioxidant.
    Mackensen GB; Patel M; Sheng H; Calvi CL; Batinic-Haberle I; Day BJ; Liang LP; Fridovich I; Crapo JD; Pearlstein RD; Warner DS
    J Neurosci; 2001 Jul; 21(13):4582-92. PubMed ID: 11425886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Competing approaches to excitotoxic neuroprotection by inert and catalytic antioxidant porphyrins.
    Tauskela JS; Brunette E; Hewitt M; Mealing G; Morley P
    Neurosci Lett; 2006 Jul; 401(3):236-41. PubMed ID: 16631306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superoxide radical and iron modulate aconitase activity in mammalian cells.
    Gardner PR; Raineri I; Epstein LB; White CW
    J Biol Chem; 1995 Jun; 270(22):13399-405. PubMed ID: 7768942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superoxide sensitivity of the Escherichia coli aconitase.
    Gardner PR; Fridovich I
    J Biol Chem; 1991 Oct; 266(29):19328-33. PubMed ID: 1655783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Delayed mitochondrial dysfunction in excitotoxic neuron death: cytochrome c release and a secondary increase in superoxide production.
    Luetjens CM; Bui NT; Sengpiel B; Münstermann G; Poppe M; Krohn AJ; Bauerbach E; Krieglstein J; Prehn JH
    J Neurosci; 2000 Aug; 20(15):5715-23. PubMed ID: 10908611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial transmembrane potential and free radical production in excitotoxic neurodegeneration.
    Prehn JH
    Naunyn Schmiedebergs Arch Pharmacol; 1998 Mar; 357(3):316-22. PubMed ID: 9550304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. N-methyl-D-aspartate receptor-mediated mitochondrial Ca(2+) overload in acute excitotoxic motor neuron death: a mechanism distinct from chronic neurotoxicity after Ca(2+) influx.
    Urushitani M; Nakamizo T; Inoue R; Sawada H; Kihara T; Honda K; Akaike A; Shimohama S
    J Neurosci Res; 2001 Mar; 63(5):377-87. PubMed ID: 11223912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Manganese (III) meso-tetrakis N-ethylpyridinium-2-yl porphyrin acts as a pro-oxidant to inhibit electron transport chain proteins, modulate bioenergetics, and enhance the response to chemotherapy in lymphoma cells.
    Jaramillo MC; Briehl MM; Batinic-Haberle I; Tome ME
    Free Radic Biol Med; 2015 Jun; 83():89-100. PubMed ID: 25725417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superoxide scavenging by Mn(II/III) tetrakis (1-methyl-4-pyridyl) porphyrin in mammalian cells.
    Gardner PR; Nguyen DD; White CW
    Arch Biochem Biophys; 1996 Jan; 325(1):20-8. PubMed ID: 8554339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metalloporphyrins improve the survival of Sod2-deficient neurons.
    Patel MN
    Aging Cell; 2003 Aug; 2(4):219-22. PubMed ID: 12934715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of potent redox-modulating manganese porphyrin, MnTM-2-PyP, on the Na(+)/H(+) exchangers NHE-1 and NHE-3 in the diabetic rat.
    Khan I; Batinic-Haberle I; Benov LT
    Redox Rep; 2009; 14(6):236-42. PubMed ID: 20003708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidative inactivation of mitochondrial aconitase results in iron and H2O2-mediated neurotoxicity in rat primary mesencephalic cultures.
    Cantu D; Schaack J; Patel M
    PLoS One; 2009 Sep; 4(9):e7095. PubMed ID: 19763183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inactivation of aconitase during the apoptosis of mouse cerebellar granule neurons induced by a deprivation of membrane depolarization.
    Tabuchi A; Funaji K; Nakatsubo J; Fukuchi M; Tsuchiya T; Tsuda M
    J Neurosci Res; 2003 Feb; 71(4):504-15. PubMed ID: 12548706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Age dependence of seizure-induced oxidative stress.
    Patel M; Li QY
    Neuroscience; 2003; 118(2):431-7. PubMed ID: 12699779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationships between superoxide levels and delayed calcium deregulation in cultured cerebellar granule cells exposed continuously to glutamate.
    Vesce S; Kirk L; Nicholls DG
    J Neurochem; 2004 Aug; 90(3):683-93. PubMed ID: 15255947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuroprotective effects of the allosteric agonist of metabotropic glutamate receptor 7 AMN082 on oxygen-glucose deprivation- and kainate-induced neuronal cell death.
    Domin H; Jantas D; Śmiałowska M
    Neurochem Int; 2015 Sep; 88():110-23. PubMed ID: 25576184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.