BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 11521207)

  • 1. Cause of progression in Duchenne muscular dystrophy: impaired differentiation more probable than replicative aging.
    Oexle K; Kohlschütter A
    Neuropediatrics; 2001 Jun; 32(3):123-9. PubMed ID: 11521207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Helper (CD4(+)) and cytotoxic (CD8(+)) T cells promote the pathology of dystrophin-deficient muscle.
    Spencer MJ; Montecino-Rodriguez E; Dorshkind K; Tidball JG
    Clin Immunol; 2001 Feb; 98(2):235-43. PubMed ID: 11161980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The value of mammalian models for duchenne muscular dystrophy in developing therapeutic strategies.
    Banks GB; Chamberlain JS
    Curr Top Dev Biol; 2008; 84():431-53. PubMed ID: 19186250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Examination of telomere lengths in muscle tissue casts doubt on replicative aging as cause of progression in Duchenne muscular dystrophy.
    Oexle K; Zwirner A; Freudenberg K; Kohlschütter A; Speer A
    Pediatr Res; 1997 Aug; 42(2):226-31. PubMed ID: 9262227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenotype of dystrophinopathy in old mdx mice.
    Lefaucheur JP; Pastoret C; Sebille A
    Anat Rec; 1995 May; 242(1):70-6. PubMed ID: 7604983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. T and B lymphocyte depletion has a marked effect on the fibrosis of dystrophic skeletal muscles in the scid/mdx mouse.
    Farini A; Meregalli M; Belicchi M; Battistelli M; Parolini D; D'Antona G; Gavina M; Ottoboni L; Constantin G; Bottinelli R; Torrente Y
    J Pathol; 2007 Oct; 213(2):229-38. PubMed ID: 17668421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Common micro-RNA signature in skeletal muscle damage and regeneration induced by Duchenne muscular dystrophy and acute ischemia.
    Greco S; De Simone M; Colussi C; Zaccagnini G; Fasanaro P; Pescatori M; Cardani R; Perbellini R; Isaia E; Sale P; Meola G; Capogrossi MC; Gaetano C; Martelli F
    FASEB J; 2009 Oct; 23(10):3335-46. PubMed ID: 19528256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elevated satellite cell number in Duchenne muscular dystrophy.
    Kottlors M; Kirschner J
    Cell Tissue Res; 2010 Jun; 340(3):541-8. PubMed ID: 20467789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transplantation of normal and DMD myoblasts expressing the telomerase gene in SCID mice.
    Seigneurin-Venin S; Bernard V; Moisset PA; Ouellette MM; Mouly V; Di Donna S; Wright WE; Tremblay JP
    Biochem Biophys Res Commun; 2000 Jun; 272(2):362-9. PubMed ID: 10833419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. IGF-II ameliorates the dystrophic phenotype and coordinately down-regulates programmed cell death.
    Smith J; Goldsmith C; Ward A; LeDieu R
    Cell Death Differ; 2000 Nov; 7(11):1109-18. PubMed ID: 11139285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Platelet-derived growth factor and its receptors are related to the progression of human muscular dystrophy: an immunohistochemical study.
    Zhao Y; Haginoya K; Sun G; Dai H; Onuma A; Iinuma K
    J Pathol; 2003 Sep; 201(1):149-59. PubMed ID: 12950028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intrinsic laryngeal muscles are spared from myonecrosis in the mdx mouse model of Duchenne muscular dystrophy.
    Marques MJ; Ferretti R; Vomero VU; Minatel E; Neto HS
    Muscle Nerve; 2007 Mar; 35(3):349-53. PubMed ID: 17143878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporal gene expression profiling of dystrophin-deficient (mdx) mouse diaphragm identifies conserved and muscle group-specific mechanisms in the pathogenesis of muscular dystrophy.
    Porter JD; Merriam AP; Leahy P; Gong B; Feuerman J; Cheng G; Khanna S
    Hum Mol Genet; 2004 Feb; 13(3):257-69. PubMed ID: 14681298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeted inhibition of Ca2+ /calmodulin signaling exacerbates the dystrophic phenotype in mdx mouse muscle.
    Chakkalakal JV; Michel SA; Chin ER; Michel RN; Jasmin BJ
    Hum Mol Genet; 2006 May; 15(9):1423-35. PubMed ID: 16551657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Initial failure in myoblast transplantation therapy has led the way toward the isolation of muscle stem cells: potential for tissue regeneration.
    Urish K; Kanda Y; Huard J
    Curr Top Dev Biol; 2005; 68():263-80. PubMed ID: 16125002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Telomere shortening in diaphragm and tibialis anterior muscles of aged mdx mice.
    Lund TC; Grange RW; Lowe DA
    Muscle Nerve; 2007 Sep; 36(3):387-90. PubMed ID: 17617801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Age-related differences in regeneration of dystrophic (mdx) and normal muscle in the mouse.
    Pastoret C; Sebille A
    Muscle Nerve; 1995 Oct; 18(10):1147-54. PubMed ID: 7659109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Satellite cells from dystrophic (mdx) mice display accelerated differentiation in primary cultures and in isolated myofibers.
    Yablonka-Reuveni Z; Anderson JE
    Dev Dyn; 2006 Jan; 235(1):203-12. PubMed ID: 16258933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Muscle genome-wide expression profiling during disease evolution in mdx mice.
    Marotta M; Ruiz-Roig C; Sarria Y; Peiro JL; Nuñez F; Ceron J; Munell F; Roig-Quilis M
    Physiol Genomics; 2009 Apr; 37(2):119-32. PubMed ID: 19223608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene expression profiling highlights defective myogenesis in DMD patients and a possible role for bone morphogenetic protein 4.
    Sterrenburg E; van der Wees CG; White SJ; Turk R; de Menezes RX; van Ommen GJ; den Dunnen JT; 't Hoen PA
    Neurobiol Dis; 2006 Jul; 23(1):228-36. PubMed ID: 16679024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.