These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 11521882)
1. Effect of various modes of pressurization on the separation in capillary electrochromatography. Ru QH; Luo GA; Fu YR J Chromatogr A; 2001 Jul; 924(1-2):331-6. PubMed ID: 11521882 [TBL] [Abstract][Full Text] [Related]
2. Electrochromatographic characterization of methacrylate-based monolith with mixed mode of hydrophilic and weak electrostatic interactions by pressurized capillary electrochromatography. Wang X; Lü H; Lin X; Xie Z J Chromatogr A; 2008 May; 1190(1-2):365-71. PubMed ID: 18359032 [TBL] [Abstract][Full Text] [Related]
3. Study of the electroosmotic flow as a means to propel the mobile phase in capillary electrochromatography in view of further miniaturization of capillary electrochromatography systems. Szekely L; Freitag R Electrophoresis; 2005 May; 26(10):1928-39. PubMed ID: 15832304 [TBL] [Abstract][Full Text] [Related]
4. Separation of peptides by pressurized capillary electrochromatography. Zhang K; Jiang Z; Yao C; Zhang Z; Wang Q; Gao R; Yan C J Chromatogr A; 2003 Feb; 987(1-2):453-8. PubMed ID: 12613841 [TBL] [Abstract][Full Text] [Related]
5. Performance of metal complex substituted polysiloxanes in capillary electrophoresis and capillary electrochromatography. Wu Q; Lee ML; Harrison RG J Chromatogr A; 2002 Aug; 967(2):289-301. PubMed ID: 12685576 [TBL] [Abstract][Full Text] [Related]
6. Preparation of polymethacrylate monolithic stationary phases having bonded octadecyl ligands and sulfonate groups: electrochromatographic characterization and application to the separation of polar solutes for pressurized capillary electrochromatography. Lin J; Wu X; Lin X; Xie Z J Chromatogr A; 2007 Oct; 1169(1-2):220-7. PubMed ID: 17875313 [TBL] [Abstract][Full Text] [Related]
7. Influencing electroosmotic flow and selectivity in open tubular electrochromatography by tetrakis(pentafluorophenyl)porphyrin as capillary wall modifier. Charvátová J; Kasicka V; Deyl Z; Král V J Chromatogr A; 2003 Mar; 990(1-2):111-9. PubMed ID: 12685589 [TBL] [Abstract][Full Text] [Related]
8. Modeling the velocity field of the electroosmotic flow in charged capillaries and in capillary columns packed with charged particles: interstitial and intraparticle velocities in capillary electrochromatography systems. Liapis AI; Grimes BA J Chromatogr A; 2000 Apr; 877(1-2):181-215. PubMed ID: 10845799 [TBL] [Abstract][Full Text] [Related]
9. Influence of pressure upon coupling pressurized capillary electrochromatography with nuclear magnetic resonance spectroscopy. Gfrörer P; Tseng LH; Rapp E; Albert K; Bayer E Anal Chem; 2001 Jul; 73(14):3234-9. PubMed ID: 11476220 [TBL] [Abstract][Full Text] [Related]
10. [Advances of capillary electrophoresis and capillary electrochromatography using ionic coating column]. Xie MJ; Feng YQ; Da SL Se Pu; 2000 Nov; 18(6):503-7. PubMed ID: 12541736 [TBL] [Abstract][Full Text] [Related]
11. Ionic liquids monolithic columns for protein separation in capillary electrochromatography. Liu CC; Deng QL; Fang GZ; Liu HL; Wu JH; Pan MF; Wang S Anal Chim Acta; 2013 Dec; 804():313-20. PubMed ID: 24267098 [TBL] [Abstract][Full Text] [Related]
12. Reverse-Polarization High-Performance Layer Electrochromatography-A New Approach to Anion Separation. Gwarda RŁ; Dzido TH Int J Mol Sci; 2023 May; 24(11):. PubMed ID: 37298340 [TBL] [Abstract][Full Text] [Related]
13. Optimized preparation of poly(styrene-co- divinylbenzene-co-methacrylic acid) monolithic capillary column for capillary electrochromatography. Jin W; Fu H; Huang X; Xiao H; Zou H Electrophoresis; 2003 Sep; 24(18):3172-80. PubMed ID: 14518041 [TBL] [Abstract][Full Text] [Related]
14. Use of electrokinetic measurements for characterization of columns used in capillary electrochromatography. Rathore AS; Li Y; Wilkins J J Chromatogr A; 2005 Jun; 1079(1-2):299-306. PubMed ID: 16038316 [TBL] [Abstract][Full Text] [Related]
15. Peptide separation in hydrophilic interaction capillary electrochromatography. Fu H; Jin W; Xiao H; Huang H; Zou H Electrophoresis; 2003 Jun; 24(12-13):2084-2091. PubMed ID: 12858379 [TBL] [Abstract][Full Text] [Related]
17. Influence of moderate Joule heating on electroosmotic flow velocity, retention, and efficiency in capillary electrochromatography. Chen G; Tallarek U; Seidel-Morgenstern A; Zhang Y J Chromatogr A; 2004 Jul; 1044(1-2):287-94. PubMed ID: 15354450 [TBL] [Abstract][Full Text] [Related]
18. Preparation of a positively charged cellulose derivative chiral stationary phase with copolymerization reaction for capillary electrochromatographic separation of enantiomers. Chen X; Qin F; Liu Y; Kong L; Zou H Electrophoresis; 2004 Aug; 25(16):2817-24. PubMed ID: 15352014 [TBL] [Abstract][Full Text] [Related]
19. Capillary electrochromatography with monolithic stationary phases: 1. Preparation of sulfonated stearyl acrylate monoliths and their electrochromatographic characterization with neutral and charged solutes. Bedair M; El Rassi Z Electrophoresis; 2002 Sep; 23(17):2938-48. PubMed ID: 12207302 [TBL] [Abstract][Full Text] [Related]
20. Separation of peptides and oligonucleotides using a monolithic polymer layer and pressurized planar electrophoresis and electrochromatography. Woodward SD; Urbanova I; Nurok D; Svec F Anal Chem; 2010 May; 82(9):3445-8. PubMed ID: 20364841 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]