BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 11522318)

  • 1. Passive transverse mechanical properties of skeletal muscle under in vivo compression.
    Bosboom EM; Hesselink MK; Oomens CW; Bouten CV; Drost MR; Baaijens FP
    J Biomech; 2001 Oct; 34(10):1365-8. PubMed ID: 11522318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Viscoelastic properties of passive skeletal muscle in compression: stress-relaxation behaviour and constitutive modelling.
    Van Loocke M; Lyons CG; Simms CK
    J Biomech; 2008; 41(7):1555-66. PubMed ID: 18396290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro compressive properties of skeletal muscles and inverse finite element analysis: Comparison of human versus animals.
    Mo F; Zheng Z; Zhang H; Li G; Yang Z; Sun D
    J Biomech; 2020 Aug; 109():109916. PubMed ID: 32807316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Method for characterizing viscoelasticity of human gluteal tissue.
    Then C; Vogl TJ; Silber G
    J Biomech; 2012 Apr; 45(7):1252-8. PubMed ID: 22360834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Passive skeletal muscle response to impact loading: experimental testing and inverse modelling.
    Takaza M; Moerman KM; Simms CK
    J Mech Behav Biomed Mater; 2013 Nov; 27():214-25. PubMed ID: 23707599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite element modelling of contracting skeletal muscle.
    Oomens CW; Maenhout M; van Oijen CH; Drost MR; Baaijens FP
    Philos Trans R Soc Lond B Biol Sci; 2003 Sep; 358(1437):1453-60. PubMed ID: 14561336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of human passive muscles for impact loads using genetic algorithm and inverse finite element methods.
    Chawla A; Mukherjee S; Karthikeyan B
    Biomech Model Mechanobiol; 2009 Feb; 8(1):67-76. PubMed ID: 18293021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The non-linear response of a muscle in transverse compression: assessment of geometry influence using a finite element model.
    Gras LL; Mitton D; Crevier-Denoix N; Laporte S
    Comput Methods Biomech Biomed Engin; 2012; 15(1):13-21. PubMed ID: 21607890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A case for poroelasticity in skeletal muscle finite element analysis: experiment and modeling.
    Wheatley BB; Odegard GM; Kaufman KR; Haut Donahue TL
    Comput Methods Biomech Biomed Engin; 2017 May; 20(6):598-601. PubMed ID: 27957877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A visco-hyperelastic model for skeletal muscle tissue under high strain rates.
    Lu YT; Zhu HX; Richmond S; Middleton J
    J Biomech; 2010 Sep; 43(13):2629-32. PubMed ID: 20566197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo muscle stiffening under bone compression promotes deep pressure sores.
    Gefen A; Gefen N; Linder-Ganz E; Margulies SS
    J Biomech Eng; 2005 Jun; 127(3):512-24. PubMed ID: 16060358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A structural model of passive skeletal muscle shows two reinforcement processes in resisting deformation.
    Gindre J; Takaza M; Moerman KM; Simms CK
    J Mech Behav Biomed Mater; 2013 Jun; 22():84-94. PubMed ID: 23587721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A continuum model for tension-compression asymmetry in skeletal muscle.
    Latorre M; Mohammadkhah M; Simms CK; Montáns FJ
    J Mech Behav Biomed Mater; 2018 Jan; 77():455-460. PubMed ID: 29028597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Viscoelastic properties of passive skeletal muscle in compression-cyclic behaviour.
    Van Loocke M; Simms CK; Lyons CG
    J Biomech; 2009 May; 42(8):1038-48. PubMed ID: 19368927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Passive nonlinear elastic behaviour of skeletal muscle: experimental results and model formulation.
    Calvo B; Ramírez A; Alonso A; Grasa J; Soteras F; Osta R; Muñoz MJ
    J Biomech; 2010 Jan; 43(2):318-25. PubMed ID: 19857866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measuring the compressive viscoelastic mechanical properties of human cervical tissue using indentation.
    Yao W; Yoshida K; Fernandez M; Vink J; Wapner RJ; Ananth CV; Oyen ML; Myers KM
    J Mech Behav Biomed Mater; 2014 Jun; 34():18-26. PubMed ID: 24548950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trunk Hybrid Passive-Active Musculoskeletal Modeling to Determine the Detailed T12-S1 Response Under In Vivo Loads.
    Khoddam-Khorasani P; Arjmand N; Shirazi-Adl A
    Ann Biomed Eng; 2018 Nov; 46(11):1830-1843. PubMed ID: 29946972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An experimental study of nonlinear rate-dependent behaviour of skeletal muscle to obtain passive mechanical properties.
    Hashemi SS; Asgari M; Rasoulian A
    Proc Inst Mech Eng H; 2020 Jun; 234(6):590-602. PubMed ID: 32133933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An experimental and computational investigation of the effects of volumetric boundary conditions on the compressive mechanics of passive skeletal muscle.
    Vaidya AJ; Wheatley BB
    J Mech Behav Biomed Mater; 2020 Feb; 102():103526. PubMed ID: 31877528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Approach for contact medical device development via integrated testing, skeletal muscle modeling, and finite element analysis.
    Shanley C; Wang QJ; Livingston B
    J Mech Behav Biomed Mater; 2024 Jul; 155():106541. PubMed ID: 38678746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.