BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 11522318)

  • 21. Société de Biomécanique Young Investigator Award 2021: Numerical investigation of the time-dependent stress-strain mechanical behaviour of skeletal muscle tissue in the context of pressure ulcer prevention.
    Lavigne T; Sciumè G; Laporte S; Pillet H; Urcun S; Wheatley B; Rohan PY
    Clin Biomech (Bristol, Avon); 2022 Mar; 93():105592. PubMed ID: 35151107
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Parametric study of a Hill-type hyperelastic skeletal muscle model.
    Lu YT; Beldie L; Walker B; Richmond S; Middleton J
    Proc Inst Mech Eng H; 2011 May; 225(5):437-47. PubMed ID: 21755774
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling the mechanical response of in vivo human skin under a rich set of deformations.
    Flynn C; Taberner A; Nielsen P
    Ann Biomed Eng; 2011 Jul; 39(7):1935-46. PubMed ID: 21394556
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Viscoelastic properties of ovine adipose tissue covering the gluteus muscles.
    Gefen A; Haberman E
    J Biomech Eng; 2007 Dec; 129(6):924-30. PubMed ID: 18067398
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inverse finite element characterization of the human myometrium derived from uniaxial compression experiments.
    Weiss S; Niederer P; Nava A; Caduff R; Bajka M
    Biomed Tech (Berl); 2008 Apr; 53(2):52-8. PubMed ID: 18605921
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Volar/dorsal compressive mechanical behavior of the transverse carpal ligament.
    Main EK; Goetz JE; Baer TE; Klocke NF; Brown TD
    J Biomech; 2012 Apr; 45(7):1180-5. PubMed ID: 22381735
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Strain distribution within the human femur due to physiological and simplified loading: finite element analysis using the muscle standardized femur model.
    Polgár K; Gill HS; Viceconti M; Murray DW; O'Connor JJ
    Proc Inst Mech Eng H; 2003; 217(3):173-89. PubMed ID: 12807158
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Passive transverse mechanical properties as a function of temperature of rat skeletal muscle in vitro.
    van Turnhout M; Peters G; Stekelenburg A; Oomens C
    Biorheology; 2005; 42(3):193-207. PubMed ID: 15894819
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A 3D active-passive numerical skeletal muscle model incorporating initial tissue strains. Validation with experimental results on rat tibialis anterior muscle.
    Grasa J; Ramírez A; Osta R; Muñoz MJ; Soteras F; Calvo B
    Biomech Model Mechanobiol; 2011 Oct; 10(5):779-87. PubMed ID: 21127938
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Human skeletal muscle behavior in vivo: Finite element implementation, experiment, and passive mechanical characterization.
    Clemen CB; Benderoth GEK; Schmidt A; Hübner F; Vogl TJ; Silber G
    J Mech Behav Biomed Mater; 2017 Jan; 65():679-687. PubMed ID: 27743943
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fully non-linear hyper-viscoelastic modeling of skeletal muscle in compression.
    Wheatley BB; Pietsch RB; Haut Donahue TL; Williams LN
    Comput Methods Biomech Biomed Engin; 2016; 19(11):1181-9. PubMed ID: 26652761
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A validated model of passive skeletal muscle to predict force and intramuscular pressure.
    Wheatley BB; Odegard GM; Kaufman KR; Haut Donahue TL
    Biomech Model Mechanobiol; 2017 Jun; 16(3):1011-1022. PubMed ID: 28040867
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Viscous elements have little impact on measured passive length-tension properties of human gastrocnemius muscle-tendon units in vivo.
    Tian M; Hoang PD; Gandevia SC; Herbert RD; Bilston LE
    J Biomech; 2011 Apr; 44(7):1334-9. PubMed ID: 21277577
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A method for a mechanical characterisation of human gluteal tissue.
    Then C; Menger J; Benderoth G; Alizadeh M; Vogl TJ; Hübner F; Silber G
    Technol Health Care; 2007; 15(6):385-98. PubMed ID: 18057562
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Finite element model of intramuscular pressure during isometric contraction of skeletal muscle.
    Jenkyn TR; Koopman B; Huijing P; Lieber RL; Kaufman KR
    Phys Med Biol; 2002 Nov; 47(22):4043-61. PubMed ID: 12476981
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Compressive properties of mouse articular cartilage determined in a novel micro-indentation test method and biphasic finite element model.
    Cao L; Youn I; Guilak F; Setton LA
    J Biomech Eng; 2006 Oct; 128(5):766-71. PubMed ID: 16995764
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hyperelastic compressive mechanical properties of the subcalcaneal soft tissue: An inverse finite element analysis.
    Isvilanonda V; Iaquinto JM; Pai S; Mackenzie-Helnwein P; Ledoux WR
    J Biomech; 2016 May; 49(7):1186-1191. PubMed ID: 27040391
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of experimental conditions on visco-hyperelastic properties of skeletal muscle tissue using a Box-Behnken design.
    Jalal N; Zidi M
    J Biomech; 2019 Mar; 85():204-209. PubMed ID: 30732908
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of trunk muscle forces and spinal loads estimated by two biomechanical models.
    Arjmand N; Gagnon D; Plamondon A; Shirazi-Adl A; Larivière C
    Clin Biomech (Bristol, Avon); 2009 Aug; 24(7):533-41. PubMed ID: 19493597
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Control of tension-compression asymmetry in Ogden hyperelasticity with application to soft tissue modelling.
    Moerman KM; Simms CK; Nagel T
    J Mech Behav Biomed Mater; 2016 Mar; 56():218-228. PubMed ID: 26719933
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.