BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 11522487)

  • 1. Electrolyte- and pH-stabilities of aqueous solid lipid nanoparticle (SLN) dispersions in artificial gastrointestinal media.
    Zimmermann E; Müller RH
    Eur J Pharm Biopharm; 2001 Sep; 52(2):203-10. PubMed ID: 11522487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of surfactants on the physical stability of solid lipid nanoparticle (SLN) formulations.
    Uner M; Wissing SA; Yener G; Müller RH
    Pharmazie; 2004 Apr; 59(4):331-2. PubMed ID: 15125588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polyhydroxy surfactants for the formulation of lipid nanoparticles (SLN and NLC): effects on size, physical stability and particle matrix structure.
    Kovacevic A; Savic S; Vuleta G; Müller RH; Keck CM
    Int J Pharm; 2011 Mar; 406(1-2):163-72. PubMed ID: 21219990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formulation of solid lipid nanoparticles (SLN): the value of different alkyl polyglucoside surfactants.
    Keck CM; Kovačević A; Müller RH; Savić S; Vuleta G; Milić J
    Int J Pharm; 2014 Oct; 474(1-2):33-41. PubMed ID: 25108048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of a lipid composition and a surfactant on the characteristics of the solid lipid microspheres and nanospheres (SLM and SLN).
    Sznitowska M; Wolska E; Baranska H; Cal K; Pietkiewicz J
    Eur J Pharm Biopharm; 2017 Jan; 110():24-30. PubMed ID: 27815177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Semisolid SLN dispersions for topical application: influence of formulation and production parameters on viscoelastic properties.
    Lippacher A; Müller RH; Mäder K
    Eur J Pharm Biopharm; 2002 Mar; 53(2):155-60. PubMed ID: 11879997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of surfactant surface coverage on formation of solid lipid nanoparticles (SLN).
    Helgason T; Awad TS; Kristbergsson K; McClements DJ; Weiss J
    J Colloid Interface Sci; 2009 Jun; 334(1):75-81. PubMed ID: 19380149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stability of lipid excipients in solid lipid nanoparticles.
    Radomska-Soukharev A
    Adv Drug Deliv Rev; 2007 Jul; 59(6):411-8. PubMed ID: 17553589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigations of the effect of the lipid matrix on drug entrapment, in vitro release, and physical stability of olanzapine-loaded solid lipid nanoparticles.
    Vivek K; Reddy H; Murthy RS
    AAPS PharmSciTech; 2007 Oct; 8(4):E83. PubMed ID: 18181544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of aqueous pH and electrolyte concentration on structure, stability and flow behavior of non-ionic surfactant based solid lipid nanoparticles.
    Choi KO; Aditya NP; Ko S
    Food Chem; 2014 Mar; 147():239-44. PubMed ID: 24206712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Digestibility and β-carotene release from lipid nanodispersions depend on dispersed phase crystallinity and interfacial properties.
    Nik AM; Langmaid S; Wright AJ
    Food Funct; 2012 Mar; 3(3):234-45. PubMed ID: 22179116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation, characterization, and evaluation of gatifloxacin loaded solid lipid nanoparticles as colloidal ocular drug delivery system.
    Kalam MA; Sultana Y; Ali A; Aqil M; Mishra AK; Chuttani K
    J Drug Target; 2010 Apr; 18(3):191-204. PubMed ID: 19839712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the Nano Spray-Drying Technology as an Innovative Manufacturing Method for Solid Lipid Nanoparticle Dry Powders.
    Glaubitt K; Ricci M; Giovagnoli S
    AAPS PharmSciTech; 2019 Jan; 20(1):19. PubMed ID: 30604256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stability determination of solid lipid nanoparticles (SLN) in aqueous dispersion after addition of electrolyte.
    Freitas C; Müller RH
    J Microencapsul; 1999; 16(1):59-71. PubMed ID: 9972503
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solid lipid nanoparticles: production, characterization and applications.
    Mehnert W; Mäder K
    Adv Drug Deliv Rev; 2001 Apr; 47(2-3):165-96. PubMed ID: 11311991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of lipid nanoparticles with high loading capacity and exceptional gastrointestinal stability for potential oral delivery applications.
    Wang T; Xue J; Hu Q; Zhou M; Luo Y
    J Colloid Interface Sci; 2017 Dec; 507():119-130. PubMed ID: 28780331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solid lipid nanodispersions containing mixed lipid core and a polar heterolipid: characterization.
    Attama AA; Schicke BC; Paepenmüller T; Müller-Goymann CC
    Eur J Pharm Biopharm; 2007 Aug; 67(1):48-57. PubMed ID: 17276663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of linalool-loaded solid lipid nanoparticles using experimental factorial design and long-term stability studies with a new centrifugal sedimentation method.
    Pereira I; Zielińska A; Ferreira NR; Silva AM; Souto EB
    Int J Pharm; 2018 Oct; 549(1-2):261-270. PubMed ID: 30075252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-destructive methods of characterization of risperidone solid lipid nanoparticles.
    Rahman Z; Zidan AS; Khan MA
    Eur J Pharm Biopharm; 2010 Sep; 76(1):127-37. PubMed ID: 20470882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and purification of cationic solid lipid nanospheres--effects on particle size, physical stability and cell toxicity.
    Heydenreich AV; Westmeier R; Pedersen N; Poulsen HS; Kristensen HG
    Int J Pharm; 2003 Mar; 254(1):83-7. PubMed ID: 12615415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.