BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

364 related articles for article (PubMed ID: 11522609)

  • 41. Characterization of endothelium-derived relaxing factors released by bradykinin in human resistance arteries.
    Ohlmann P; Martínez MC; Schneider F; Stoclet JC; Andriantsitohaina R
    Br J Pharmacol; 1997 Jun; 121(4):657-64. PubMed ID: 9208131
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mechanism of CGRP-induced relaxation in rat intramural coronary arteries.
    Sheykhzade M; Berg Nyborg NC
    Br J Pharmacol; 2001 Mar; 132(6):1235-46. PubMed ID: 11250874
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cellular target of voltage and calcium-dependent K(+) channel blockers involved in EDHF-mediated responses in rat superior mesenteric artery.
    Ghisdal P; Morel N
    Br J Pharmacol; 2001 Nov; 134(5):1021-8. PubMed ID: 11682450
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Endothelium-independent relaxation to raloxifene in porcine coronary artery.
    Leung HS; Seto SW; Kwan YW; Leung FP; Au AL; Yung LM; Yao X; Huang Y
    Eur J Pharmacol; 2007 Jan; 555(2-3):178-84. PubMed ID: 17113071
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Role of K+ channels in EDHF-dependent relaxation induced by acetylcholine in canine coronary artery.
    Nakashima Y; Toki Y; Fukami Y; Hibino M; Okumura K; Ito T
    Heart Vessels; 1997; 12(6):287-93. PubMed ID: 9860196
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ginsenoside Rb1 blocks homocysteine-induced endothelial dysfunction in porcine coronary arteries.
    Zhou W; Chai H; Lin PH; Lumsden AB; Yao Q; Chen C
    J Vasc Surg; 2005 May; 41(5):861-8. PubMed ID: 15886672
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Endothelium-derived hyperpolarizing factor, but not nitric oxide or prostacyclin release, is resistant to menadione-induced oxidative stress in the bovine coronary artery.
    Kaw S; Hecker M
    Naunyn Schmiedebergs Arch Pharmacol; 1999 Feb; 359(2):133-9. PubMed ID: 10048598
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mechanisms underlying endothelium-dependent, nitric oxide- and prostanoid-independent relaxation in monkey and dog coronary arteries.
    Fujioka H; Ayajiki K; Shinozaki K; Toda N; Okamura T
    Naunyn Schmiedebergs Arch Pharmacol; 2002 Nov; 366(5):488-95. PubMed ID: 12382080
    [TBL] [Abstract][Full Text] [Related]  

  • 49. NO/PGI2-independent vasorelaxation and the cytochrome P450 pathway in rabbit carotid artery.
    Dong H; Waldron GJ; Galipeau D; Cole WC; Triggle CR
    Br J Pharmacol; 1997 Feb; 120(4):695-701. PubMed ID: 9051310
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Two mechanisms mediate relaxation by bradykinin of pig coronary artery: NO-dependent and -independent responses.
    Cowan CL; Cohen RA
    Am J Physiol; 1991 Sep; 261(3 Pt 2):H830-5. PubMed ID: 1653538
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Endothelium-dependent relaxation and hyperpolarization in guinea-pig coronary artery: role of epoxyeicosatrienoic acid.
    Eckman DM; Hopkins N; McBride C; Keef KD
    Br J Pharmacol; 1998 May; 124(1):181-9. PubMed ID: 9630358
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Thimerosal blocks stimulated but not basal release of endothelium-derived relaxing factor (EDRF) in dog isolated coronary artery.
    Crack P; Cocks T
    Br J Pharmacol; 1992 Oct; 107(2):566-72. PubMed ID: 1384915
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of hypoxia-reoxygenation on endothelial function in porcine cardiac microveins.
    Dong YY; Wu M; Yim AP; He GW
    Ann Thorac Surg; 2006 May; 81(5):1708-14. PubMed ID: 16631660
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An important role for the Na+-Ca2+ exchanger in the decrease in cytosolic Ca2+ concentration induced by isoprenaline in the porcine coronary artery.
    Yamanaka J; Nishimura J; Hirano K; Kanaide H
    J Physiol; 2003 Jun; 549(Pt 2):553-62. PubMed ID: 12740420
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Comparison of University of Wisconsin and St Thomas' Hospital solutions on endothelium-derived hyperpolarizing factor-mediated function in coronary micro-arteries.
    Ge ZD; He GW
    Transplantation; 2000 Jul; 70(1):22-31. PubMed ID: 10919570
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Different involvement of nitric oxide in endothelium-dependent relaxation of porcine pulmonary artery and vein: influence of hypoxia.
    Félétou M; Girard V; Canet E
    J Cardiovasc Pharmacol; 1995 Apr; 25(4):665-73. PubMed ID: 7596137
    [TBL] [Abstract][Full Text] [Related]  

  • 57. NO synthase inhibition attenuates EDHF-mediated relaxation induced by TRPV4 channel agonist GSK1016790A in the rat pulmonary artery: Role of TxA2.
    Addison MP; Singh TU; Parida S; Choudhury S; Kasa JK; Sukumaran SV; Darzi SA; Kandasamy K; Singh V; Kumar D; Mishra SK
    Pharmacol Rep; 2016 Jun; 68(3):620-6. PubMed ID: 26991376
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Impaired endothelium-derived hyperpolarizing factor-mediated relaxation in coronary arteries by cold storage with University of Wisconsin solution.
    He GW; Yang CQ
    J Thorac Cardiovasc Surg; 1998 Jul; 116(1):122-30. PubMed ID: 9671906
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Relaxation by bradykinin in porcine ciliary artery. Role of nitric oxide and K(+)-channels.
    Zhu P; Bény JL; Flammer J; Lüscher TF; Haefliger IO
    Invest Ophthalmol Vis Sci; 1997 Aug; 38(9):1761-7. PubMed ID: 9286264
    [TBL] [Abstract][Full Text] [Related]  

  • 60. L-type Ca2+ channels are not involved in coronary endothelial Ca2+ influx mechanism responsible for endothelium-dependent relaxation.
    Uchida H; Tanaka Y; Ishii K; Nakayama K
    Res Commun Mol Pathol Pharmacol; 1999; 104(2):127-44. PubMed ID: 10634306
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.