BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 11523679)

  • 1. Vascular smooth muscle cell differentiation in human cerebral vascular malformations.
    Uranishi R; Baev NI; Kim JH; Awad IA
    Neurosurgery; 2001 Sep; 49(3):671-9; discussion 679-80. PubMed ID: 11523679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Further study of CD31 protein and messenger ribonucleic acid expression in human cerebral vascular malformations.
    Uranishi R; Awadallah NA; Ogunshola OO; Awad IA
    Neurosurgery; 2002 Jan; 50(1):110-5; discussion 115-6. PubMed ID: 11844241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of endothelial cell angiogenesis receptors in human cerebrovascular malformations.
    Uranishi R; Baev NI; Ng PY; Kim JH; Awad IA
    Neurosurgery; 2001 Feb; 48(2):359-67; discussion 367-8. PubMed ID: 11220380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of myosin heavy chain isoforms by smooth muscle cells in cerebral arteriovenous malformations.
    Hoya K; Asai A; Sasaki T; Nagata K; Kimura K; Kirino T
    Acta Neuropathol; 2003 May; 105(5):455-61. PubMed ID: 12677445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of integrins in cerebral arteriovenous and cavernous malformations.
    Seker A; Yildirim O; Kurtkaya O; Sav A; Günel M; Pamir MN; Kiliç T
    Neurosurgery; 2006 Jan; 58(1):159-68; discussion 159-68. PubMed ID: 16385340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Altered vascular smooth muscle cell differentiation in the endometrial vasculature in menorrhagia.
    Biswas Shivhare S; Bulmer JN; Innes BA; Hapangama DK; Lash GE
    Hum Reprod; 2014 Sep; 29(9):1884-94. PubMed ID: 25006206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variations in structural protein expression and endothelial cell proliferation in relation to clinical manifestations of cerebral cavernous malformations.
    Shenkar R; Sarin H; Awadallah NA; Gault J; Kleinschmidt-DeMasters BK; Awad IA
    Neurosurgery; 2005 Feb; 56(2):343-54. PubMed ID: 15670382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of smooth muscle proteins in cavernous and arteriovenous malformations.
    Hoya K; Asai A; Sasaki T; Kimura K; Kirino T
    Acta Neuropathol; 2001 Sep; 102(3):257-63. PubMed ID: 11585250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of angiogenic factors and structural proteins in central nervous system vascular malformations.
    Rothbart D; Awad IA; Lee J; Kim J; Harbaugh R; Criscuolo GR
    Neurosurgery; 1996 May; 38(5):915-24; discussion 924-5. PubMed ID: 8727816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uterine spiral artery muscle dedifferentiation.
    Robson A; Lash GE; Innes BA; Zhang JY; Robson SC; Bulmer JN
    Hum Reprod; 2019 Aug; 34(8):1428-1438. PubMed ID: 31348822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of structural proteins and angiogenic factors in cerebrovascular anomalies.
    Kiliç T; Pamir MN; Küllü S; Eren F; Ozek MM; Black PM
    Neurosurgery; 2000 May; 46(5):1179-91; discussion 1191-2. PubMed ID: 10807251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrastructural pathological features of cerebrovascular malformations: a preliminary report.
    Wong JH; Awad IA; Kim JH
    Neurosurgery; 2000 Jun; 46(6):1454-9. PubMed ID: 10834648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of transcriptional and posttranscriptional properties of native and cultured phenotypically modulated vascular smooth muscle cells.
    Huggins CL; Povstyan OV; Harhun MI
    Cell Tissue Res; 2013 May; 352(2):265-75. PubMed ID: 23263463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Desmuslin gene knockdown causes altered expression of phenotype markers and differentiation of saphenous vein smooth muscle cells.
    Xiao Y; Huang Z; Yin H; Zhang H; Wang S
    J Vasc Surg; 2010 Sep; 52(3):684-90. PubMed ID: 20573469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of endoglin expression in normal brain tissue and in cerebral arteriovenous malformations.
    Matsubara S; Bourdeau A; terBrugge KG; Wallace C; Letarte M
    Stroke; 2000 Nov; 31(11):2653-60. PubMed ID: 11062290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The A10 cell line: a model for neonatal, neointimal, or differentiated vascular smooth muscle cells?
    Rao RS; Miano JM; Olson EN; Seidel CL
    Cardiovasc Res; 1997 Oct; 36(1):118-26. PubMed ID: 9415280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene expression analysis of nidus of cerebral arteriovenous malformations reveals vascular structures with deficient differentiation and maturation.
    Thomas JM; Surendran S; Abraham M; Sasankan D; Bhaadri S; Rajavelu A; Kartha CC
    PLoS One; 2018; 13(6):e0198617. PubMed ID: 29897969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of vascular smooth muscle cells in canine great vessels.
    Isayama N; Matsumura G; Yamazaki K
    BMC Vet Res; 2013 Mar; 9():54. PubMed ID: 23531174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Intracranial arteriovenous malformations: histopathological features].
    Brocheriou I; Capron F
    J Neuroradiol; 2004 Dec; 31(5):359-61. PubMed ID: 15687951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differentiation of smooth muscle cells in human blood vessels as defined by smoothelin, a novel marker for the contractile phenotype.
    van der Loop FT; Gabbiani G; Kohnen G; Ramaekers FC; van Eys GJ
    Arterioscler Thromb Vasc Biol; 1997 Apr; 17(4):665-71. PubMed ID: 9108778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.