BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 11523679)

  • 81. Phenotypic modulation of smooth muscle cells in human cerebral aneurysmal walls.
    Nakajima N; Nagahiro S; Sano T; Satomi J; Satoh K
    Acta Neuropathol; 2000 Nov; 100(5):475-80. PubMed ID: 11045669
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Myosin gene expression and cell phenotypes in vascular smooth muscle during development, in experimental models, and in vascular disease.
    Sartore S; Chiavegato A; Franch R; Faggin E; Pauletto P
    Arterioscler Thromb Vasc Biol; 1997 Jul; 17(7):1210-5. PubMed ID: 9261248
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Resident phenotypically modulated vascular smooth muscle cells in healthy human arteries.
    Harhun MI; Huggins CL; Ratnasingham K; Raje D; Moss RF; Szewczyk K; Vasilikostas G; Greenwood IA; Khong TK; Wan A; Reddy M
    J Cell Mol Med; 2012 Nov; 16(11):2802-12. PubMed ID: 22862785
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Down-regulation of miR-23b induces phenotypic switching of vascular smooth muscle cells in vitro and in vivo.
    Iaconetti C; De Rosa S; Polimeni A; Sorrentino S; Gareri C; Carino A; Sabatino J; Colangelo M; Curcio A; Indolfi C
    Cardiovasc Res; 2015 Sep; 107(4):522-33. PubMed ID: 25994172
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Evidence for endothelial-to-mesenchymal transition in human brain arteriovenous malformations.
    Shoemaker LD; McCormick AK; Allen BM; Chang SD
    Clin Transl Med; 2020 Jun; 10(2):e99. PubMed ID: 32564509
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Spatially regulated differentiation of endometrial vascular smooth muscle cells.
    Kohnen G; Campbell S; Jeffers MD; Cameron IT
    Hum Reprod; 2000 Feb; 15(2):284-92. PubMed ID: 10655297
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Smooth muscle alpha actin and myosin heavy chain expression in the vascular smooth muscle cells surrounding human endometrial arterioles.
    Abberton KM; Healy DL; Rogers PA
    Hum Reprod; 1999 Dec; 14(12):3095-100. PubMed ID: 10601102
    [TBL] [Abstract][Full Text] [Related]  

  • 88. A novel co-culture assay to evaluate the effects of sympathetic innervation on vascular smooth muscle differentiation.
    Jafarkhani S; Khakbiz M; Amoabediny G; Mohammadi J; Tahmasebipour M; Rabbani H; Salimi A; Lee KB
    Bioorg Chem; 2023 Apr; 133():106233. PubMed ID: 36731293
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Notch4 is activated in endothelial and smooth muscle cells in human brain arteriovenous malformations.
    ZhuGe Q; Wu Z; Huang L; Zhao B; Zhong M; Zheng W; GouRong C; Mao X; Xie L; Wang X; Jin K
    J Cell Mol Med; 2013 Nov; 17(11):1458-64. PubMed ID: 24373503
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Lung smooth muscle differentiation.
    Low RB; White SL
    Int J Biochem Cell Biol; 1998 Aug; 30(8):869-83. PubMed ID: 9744079
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Renal vascular walls in patients with preeclampsia superimposed on essential hypertension.
    Nagai Y; Saito Y; Hamada K; Hara N; Nakanishi K; Masaki K; Tanaka M; Ger YC; Nakamura K
    Am J Kidney Dis; 2001 Apr; 37(4):728-35. PubMed ID: 11273872
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Wall shear stress on vascular smooth muscle cells exerts angiogenic effects on extracranial arteriovenous malformations.
    Ryu JY; Park TH; Lee JS; Oh EJ; Kim HM; Lee SJ; Lee J; Lee SY; Huh S; Kim JY; Im S; Chung HY
    Arch Plast Surg; 2022 Jan; 49(1):115-120. PubMed ID: 35086320
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Smooth muscle cell heterogeneity: patterns of gene expression in vascular smooth muscle cells in vitro and in vivo.
    Shanahan CM; Weissberg PL
    Arterioscler Thromb Vasc Biol; 1998 Mar; 18(3):333-8. PubMed ID: 9514400
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Abnormal elastin and collagen deposition is present in extracranial arteriovenous malformations: A comparison to intracranial disease.
    Wei T; Shalin S; Draper E; Miller E; Zhang H; Sun R; Lee M; Albert G; Richter GT
    Histol Histopathol; 2019 Dec; 34(12):1355-1363. PubMed ID: 31119718
    [TBL] [Abstract][Full Text] [Related]  

  • 95. DNA fragmentation in central nervous system vascular malformations.
    Takagi Y; Hattori I; Nozaki K; Ishikawa M; Hashimoto N
    Acta Neurochir (Wien); 2000; 142(9):987-94. PubMed ID: 11086807
    [TBL] [Abstract][Full Text] [Related]  

  • 96. A novel isoform of the smooth muscle cell differentiation marker smoothelin.
    Krämer J; Aguirre-Arteta AM; Thiel C; Gross CM; Dietz R; Cardoso MC; Leonhardt H
    J Mol Med (Berl); 1999 Feb; 77(2):294-8. PubMed ID: 10023782
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Pericytes and vascular smooth muscle cells in central nervous system arteriovenous malformations.
    Nakisli S; Lagares A; Nielsen CM; Cuervo H
    Front Physiol; 2023; 14():1210563. PubMed ID: 37601628
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Cerebral cavernomas in adults and children express relaxin.
    Gewiss C; Hagel C; Krajewski K
    J Neurosurg Pediatr; 2019 Nov; 25(2):144-150. PubMed ID: 31756710
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Intracranial Vascular Malformations and Epilepsy.
    Josephson CB; Rosenow F; Al-Shahi Salman R
    Semin Neurol; 2015 Jun; 35(3):223-34. PubMed ID: 26060902
    [TBL] [Abstract][Full Text] [Related]  

  • 100.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.