These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 11523781)
41. Opposite base specificity in excision of pyrimidine ring-opened 1,N6-ethenoadenine by thymine glycol-DNA-glycosylases. Bajek M; Cieśla JM; Tudek B DNA Repair (Amst); 2002 Mar; 1(3):251-7. PubMed ID: 12509256 [TBL] [Abstract][Full Text] [Related]
42. Intrinsic 5'-deoxyribose-5-phosphate lyase activity in Saccharomyces cerevisiae Trf4 protein with a possible role in base excision DNA repair. Gellon L; Carson DR; Carson JP; Demple B DNA Repair (Amst); 2008 Feb; 7(2):187-98. PubMed ID: 17983848 [TBL] [Abstract][Full Text] [Related]
43. Cellular role of yeast Apn1 apurinic endonuclease/3'-diesterase: repair of oxidative and alkylation DNA damage and control of spontaneous mutation. Ramotar D; Popoff SC; Gralla EB; Demple B Mol Cell Biol; 1991 Sep; 11(9):4537-44. PubMed ID: 1715020 [TBL] [Abstract][Full Text] [Related]
44. The Pol beta-14 dominant negative rat DNA polymerase beta mutator mutant commits errors during the gap-filling step of base excision repair in Saccharomyces cerevisiae. Clairmont CA; Sweasy JB J Bacteriol; 1998 May; 180(9):2292-7. PubMed ID: 9573177 [TBL] [Abstract][Full Text] [Related]
45. Novel substrates of Escherichia coli nth protein and its kinetics for excision of modified bases from DNA damaged by free radicals. Dizdaroglu M; Bauche C; Rodriguez H; Laval J Biochemistry; 2000 May; 39(18):5586-92. PubMed ID: 10820032 [TBL] [Abstract][Full Text] [Related]
46. The Saccharomyces cerevisiae ETH1 gene, an inducible homolog of exonuclease III that provides resistance to DNA-damaging agents and limits spontaneous mutagenesis. Bennett RA Mol Cell Biol; 1999 Mar; 19(3):1800-9. PubMed ID: 10022867 [TBL] [Abstract][Full Text] [Related]
47. Evidence for the involvement of nucleotide excision repair in the removal of abasic sites in yeast. Torres-Ramos CA; Johnson RE; Prakash L; Prakash S Mol Cell Biol; 2000 May; 20(10):3522-8. PubMed ID: 10779341 [TBL] [Abstract][Full Text] [Related]
48. Efficient removal of formamidopyrimidines by 8-oxoguanine glycosylases. Krishnamurthy N; Haraguchi K; Greenberg MM; David SS Biochemistry; 2008 Jan; 47(3):1043-50. PubMed ID: 18154319 [TBL] [Abstract][Full Text] [Related]
49. Nucleotide-excision repair of DNA in cell-free extracts of the yeast Saccharomyces cerevisiae. Wang Z; Wu X; Friedberg EC Proc Natl Acad Sci U S A; 1993 Jun; 90(11):4907-11. PubMed ID: 8506335 [TBL] [Abstract][Full Text] [Related]
50. Contribution of E. coli AlkA, TagA glycosylases and UvrABC-excinuclease in MMS mutagenesis. Grzesiuk E; Gozdek A; Tudek B Mutat Res; 2001 Sep; 480-481():77-84. PubMed ID: 11506801 [TBL] [Abstract][Full Text] [Related]
51. Repair of oxidative DNA damage: mechanisms and functions. Lu AL; Li X; Gu Y; Wright PM; Chang DY Cell Biochem Biophys; 2001; 35(2):141-70. PubMed ID: 11892789 [TBL] [Abstract][Full Text] [Related]
52. Origin of endogenous DNA abasic sites in Saccharomyces cerevisiae. Guillet M; Boiteux S Mol Cell Biol; 2003 Nov; 23(22):8386-94. PubMed ID: 14585995 [TBL] [Abstract][Full Text] [Related]
53. Defects in base excision repair combined with elevated intracellular dCTP levels dramatically reduce mutation induction in yeast by ethyl methanesulfonate and N-methyl-N'-nitro-N-nitrosoguanidine. Kunz BA; Henson ES; Karthikeyan R; Kuschak T; McQueen SA; Scott CA; Xiao W Environ Mol Mutagen; 1998; 32(2):173-8. PubMed ID: 9776180 [TBL] [Abstract][Full Text] [Related]
54. DNA substrates containing defined oxidative base lesions and their application to study substrate specificities of base excision repair enzymes. Ide H Prog Nucleic Acid Res Mol Biol; 2001; 68():207-21. PubMed ID: 11554298 [TBL] [Abstract][Full Text] [Related]
55. In vivo evidence for endogenous DNA alkylation damage as a source of spontaneous mutation in eukaryotic cells. Xiao W; Samson L Proc Natl Acad Sci U S A; 1993 Mar; 90(6):2117-21. PubMed ID: 7681584 [TBL] [Abstract][Full Text] [Related]
56. The repair of DNA methylation damage in Saccharomyces cerevisiae. Xiao W; Chow BL; Rathgeber L Curr Genet; 1996 Dec; 30(6):461-8. PubMed ID: 8939806 [TBL] [Abstract][Full Text] [Related]
57. Repair of DNA strand breaks by the overlapping functions of lesion-specific and non-lesion-specific DNA 3' phosphatases. Vance JR; Wilson TE Mol Cell Biol; 2001 Nov; 21(21):7191-8. PubMed ID: 11585902 [TBL] [Abstract][Full Text] [Related]
58. Expansion of base excision repair compensates for a lack of DNA repair by oxidative dealkylation in budding yeast. Admiraal SJ; Eyler DE; Baldwin MR; Brines EM; Lohans CT; Schofield CJ; O'Brien PJ J Biol Chem; 2019 Sep; 294(37):13629-13637. PubMed ID: 31320474 [TBL] [Abstract][Full Text] [Related]
59. Abrogation of the Chk1-Pds1 checkpoint leads to tolerance of persistent single-strand breaks in Saccharomyces cerevisiae. Karumbati AS; Wilson TE Genetics; 2005 Apr; 169(4):1833-44. PubMed ID: 15687272 [TBL] [Abstract][Full Text] [Related]
60. Substrate specificity of the Ogg1 protein of Saccharomyces cerevisiae: excision of guanine lesions produced in DNA by ionizing radiation- or hydrogen peroxide/metal ion-generated free radicals. Karahalil B; Girard PM; Boiteux S; Dizdaroglu M Nucleic Acids Res; 1998 Mar; 26(5):1228-33. PubMed ID: 9469830 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]