BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 11523784)

  • 1. Identification of genes required for growth under ethanol stress using transposon mutagenesis in Saccharomyces cerevisiae.
    Takahashi T; Shimoi H; Ito K
    Mol Genet Genomics; 2001 Aug; 265(6):1112-9. PubMed ID: 11523784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of novel genes responsible for ethanol and/or thermotolerance by transposon mutagenesis in Saccharomyces cerevisiae.
    Kim HS; Kim NR; Yang J; Choi W
    Appl Microbiol Biotechnol; 2011 Aug; 91(4):1159-72. PubMed ID: 21556919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of novel genes responsible for salt tolerance by transposon mutagenesis in Saccharomyces cerevisiae.
    Park WK; Yang JW; Kim HS
    J Ind Microbiol Biotechnol; 2015 Apr; 42(4):567-75. PubMed ID: 25613285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The identification of transposon-tagged mutations in essential genes that affect cell morphology in Saccharomyces cerevisiae.
    Chun KT; Goebl MG
    Genetics; 1996 Jan; 142(1):39-50. PubMed ID: 8770583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide identification of genes required for growth of Saccharomyces cerevisiae under ethanol stress.
    van Voorst F; Houghton-Larsen J; Jønson L; Kielland-Brandt MC; Brandt A
    Yeast; 2006 Apr; 23(5):351-9. PubMed ID: 16598687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disruption of URA7 and GAL6 improves the ethanol tolerance and fermentation capacity of Saccharomyces cerevisiae.
    Yazawa H; Iwahashi H; Uemura H
    Yeast; 2007 Jul; 24(7):551-60. PubMed ID: 17506111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of Saccharomyces cerevisiae strains with enhanced ethanol tolerance by mutagenesis of the TATA-binding protein gene and identification of novel genes associated with ethanol tolerance.
    Yang J; Bae JY; Lee YM; Kwon H; Moon HY; Kang HA; Yee SB; Kim W; Choi W
    Biotechnol Bioeng; 2011 Aug; 108(8):1776-87. PubMed ID: 21437883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transposon mutagenesis to improve the growth of recombinant Saccharomyces cerevisiae on D-xylose.
    Ni H; Laplaza JM; Jeffries TW
    Appl Environ Microbiol; 2007 Apr; 73(7):2061-6. PubMed ID: 17277207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ethanol-tolerant Saccharomyces cerevisiae strains isolated under selective conditions by over-expression of a proofreading-deficient DNA polymerase delta.
    Abe H; Fujita Y; Takaoka Y; Kurita E; Yano S; Tanaka N; Nakayama K
    J Biosci Bioeng; 2009 Sep; 108(3):199-204. PubMed ID: 19664552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large-scale analysis of the yeast genome by transposon tagging and gene disruption.
    Ross-Macdonald P; Coelho PS; Roemer T; Agarwal S; Kumar A; Jansen R; Cheung KH; Sheehan A; Symoniatis D; Umansky L; Heidtman M; Nelson FK; Iwasaki H; Hager K; Gerstein M; Miller P; Roeder GS; Snyder M
    Nature; 1999 Nov; 402(6760):413-8. PubMed ID: 10586881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Screening and characterization of transposon-insertion mutants in a pseudohyphal strain of Saccharomyces cerevisiae.
    Suzuki C; Hori Y; Kashiwagi Y
    Yeast; 2003 Apr; 20(5):407-15. PubMed ID: 12673624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis.
    Hirasawa T; Yoshikawa K; Nakakura Y; Nagahisa K; Furusawa C; Katakura Y; Shimizu H; Shioya S
    J Biotechnol; 2007 Aug; 131(1):34-44. PubMed ID: 17604866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large-scale mutagenesis of the yeast genome using a Tn7-derived multipurpose transposon.
    Kumar A; Seringhaus M; Biery MC; Sarnovsky RJ; Umansky L; Piccirillo S; Heidtman M; Cheung KH; Dobry CJ; Gerstein MB; Craig NL; Snyder M
    Genome Res; 2004 Oct; 14(10A):1975-86. PubMed ID: 15466296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of novel genes to assign enhanced tolerance to osmotic stress in Saccharomyces cerevisiae.
    Kim B; Kim HS
    FEMS Microbiol Lett; 2018 Jul; 365(14):. PubMed ID: 29931330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In-frame linker insertion mutagenesis of yeast transposon Ty1: mutations, transposition and dominance.
    Monokian GM; Braiterman LT; Boeke JD
    Gene; 1994 Feb; 139(1):9-18. PubMed ID: 8112595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using Yeast Transposon-Insertion Libraries for Phenotypic Screening and Protein Localization.
    Kumar A
    Cold Spring Harb Protoc; 2016 Jun; 2016(6):. PubMed ID: 27250939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disruption of YLR162W in Saccharomyces cerevisiae results in increased tolerance to organic solvents.
    Kim HS
    Biotechnol Lett; 2016 Nov; 38(11):1955-1960. PubMed ID: 27488408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of genes affecting lipid content using transposon mutagenesis in Saccharomyces cerevisiae.
    Kamisaka Y; Noda N; Tomita N; Kimura K; Kodaki T; Hosaka K
    Biosci Biotechnol Biochem; 2006 Mar; 70(3):646-53. PubMed ID: 16556980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transposon mutagenesis reveals novel loci affecting tolerance to salt stress and growth at low temperature.
    de Jesus Ferreira MC; Bao X; Laizé V; Hohmann S
    Curr Genet; 2001 Aug; 40(1):27-39. PubMed ID: 11570514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large-scale analysis of gene expression, protein localization, and gene disruption in Saccharomyces cerevisiae.
    Burns N; Grimwade B; Ross-Macdonald PB; Choi EY; Finberg K; Roeder GS; Snyder M
    Genes Dev; 1994 May; 8(9):1087-105. PubMed ID: 7926789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.