These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 11523894)

  • 1. Chromosomally encoded arsenical resistance of the moderately thermophilic acidophile Acidithiobacillus caldus.
    Dopson M; Lindström EB; Hallberg KB
    Extremophiles; 2001 Aug; 5(4):247-55. PubMed ID: 11523894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cloning and characterization of the chromosomal arsenic resistance genes from Acidithiobacillus caldus and enhanced arsenic resistance on conjugal transfer of ars genes located on transposon TnAtcArs.
    Kotze AA; Tuffin IM; Deane SM; Rawlings DE
    Microbiology (Reading); 2006 Dec; 152(Pt 12):3551-3560. PubMed ID: 17159207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An unusual Tn21-like transposon containing an ars operon is present in highly arsenic-resistant strains of the biomining bacterium Acidithiobacillus caldus.
    Tuffin IM; de Groot P; Deane SM; Rawlings DE
    Microbiology (Reading); 2005 Sep; 151(Pt 9):3027-3039. PubMed ID: 16151213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional analysis of a chromosomal arsenic resistance operon in Pseudomonas fluorescens strain MSP3.
    Prithivirajsingh S; Mishra SK; Mahadevan A
    Mol Biol Rep; 2001; 28(2):63-72. PubMed ID: 11931390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioleaching of arsenopyrite by mixed cultures of iron-oxidizing and sulfur-oxidizing microorganisms.
    Deng S; Gu G; Wu Z; Xu X
    Chemosphere; 2017 Oct; 185():403-411. PubMed ID: 28710989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Construction of an engineered Acidithiobacillus caldus with high-efficiency arsenic resistance].
    Zhao Q; Liu XM; Zhan Y; Lin JQ; Yan WM; Bian J; Liu Y
    Wei Sheng Wu Xue Bao; 2005 Oct; 45(5):675-9. PubMed ID: 16342754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of arsB and tetH mutants of the sulfur-oxidizing bacterium Acidithiobacillus caldus by marker exchange.
    van Zyl LJ; van Munster JM; Rawlings DE
    Appl Environ Microbiol; 2008 Sep; 74(18):5686-94. PubMed ID: 18658286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arsenic efflux governed by the arsenic resistance determinant of Staphylococcus aureus plasmid pI258.
    Bröer S; Ji G; Bröer A; Silver S
    J Bacteriol; 1993 Jun; 175(11):3480-5. PubMed ID: 8501052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efflux Transporter ArsK Is Responsible for Bacterial Resistance to Arsenite, Antimonite, Trivalent Roxarsone, and Methylarsenite.
    Shi K; Li C; Rensing C; Dai X; Fan X; Wang G
    Appl Environ Microbiol; 2018 Dec; 84(24):. PubMed ID: 30315082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction of small plasmid vectors for use in genetic improvement of the extremely acidophilic Acidithiobacillus caldus.
    Meng J; Wang H; Liu X; Lin J; Pang X; Lin J
    Microbiol Res; 2013 Oct; 168(8):469-76. PubMed ID: 23639949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Escherichia coli chromosomal ars operon homolog is functional in arsenic detoxification and is conserved in gram-negative bacteria.
    Diorio C; Cai J; Marmor J; Shinder R; DuBow MS
    J Bacteriol; 1995 Apr; 177(8):2050-6. PubMed ID: 7721697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation and expression of the arsenic resistance operon from Staphylococcus aureus plasmid pI258.
    Ji G; Silver S
    J Bacteriol; 1992 Jun; 174(11):3684-94. PubMed ID: 1534328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential role of thiobacillus caldus in arsenopyrite bioleaching.
    Dopson M; Lindstrom EB
    Appl Environ Microbiol; 1999 Jan; 65(1):36-40. PubMed ID: 9872756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression and regulation of the antimonite, arsenite, and arsenate resistance operon of Staphylococcus xylosus plasmid pSX267.
    Rosenstein R; Peschel A; Wieland B; Götz F
    J Bacteriol; 1992 Jun; 174(11):3676-83. PubMed ID: 1534327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection and analysis of chromosomal arsenic resistance in Pseudomonas fluorescens strain MSP3.
    Prithivirajsingh S; Mishra SK; Mahadevan A
    Biochem Biophys Res Commun; 2001 Feb; 280(5):1393-401. PubMed ID: 11162686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of genes involved in arsenic resistance in Corynebacterium glutamicum ATCC 13032.
    Ordóñez E; Letek M; Valbuena N; Gil JA; Mateos LM
    Appl Environ Microbiol; 2005 Oct; 71(10):6206-15. PubMed ID: 16204540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ferric Uptake Regulator Provides a New Strategy for Acidophile Adaptation to Acidic Ecosystems.
    Chen XK; Li XY; Ha YF; Lin JQ; Liu XM; Pang X; Lin JQ; Chen LX
    Appl Environ Microbiol; 2020 May; 86(11):. PubMed ID: 32245756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ATP generation during reduced inorganic sulfur compound oxidation by Acidithiobacillus caldus is exclusively due to electron transport phosphorylation.
    Dopson M; Lindström EB; Hallberg KB
    Extremophiles; 2002 Apr; 6(2):123-9. PubMed ID: 12013432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction of conjugative gene transfer system between E. coli and moderately thermophilic, extremely acidophilic Acidithiobacillus caldus MTH-04.
    Liu X; Lin J; Zhang Z; Bian J; Zhao Q; Liu Y; Lin J; Yan W
    J Microbiol Biotechnol; 2007 Jan; 17(1):162-7. PubMed ID: 18051368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmid-encoded resistance to arsenic and antimony.
    Kaur P; Rosen BP
    Plasmid; 1992 Jan; 27(1):29-40. PubMed ID: 1531541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.