BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 11523997)

  • 1. Hydrophobic modulation of heme properties in heme protein maquettes.
    Gibney BR; Huang SS; Skalicky JJ; Fuentes EJ; Wand AJ; Dutton PL
    Biochemistry; 2001 Sep; 40(35):10550-61. PubMed ID: 11523997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-assembly of heme A and heme B in a designed four-helix bundle: implications for a cytochrome c oxidase maquette.
    Gibney BR; Isogai Y; Rabanal F; Reddy KS; Grosset AM; Moser CC; Dutton PL
    Biochemistry; 2000 Sep; 39(36):11041-9. PubMed ID: 10998241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of four helix bundle topology on heme binding and redox properties.
    Gibney BR; Rabanal F; Reddy KS; Dutton PL
    Biochemistry; 1998 Mar; 37(13):4635-43. PubMed ID: 9521784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The HP-1 maquette: from an apoprotein structure to a structured hemoprotein designed to promote redox-coupled proton exchange.
    Huang SS; Koder RL; Lewis M; Wand AJ; Dutton PL
    Proc Natl Acad Sci U S A; 2004 Apr; 101(15):5536-41. PubMed ID: 15056758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heme redox potential control in de novo designed four-alpha-helix bundle proteins.
    Shifman JM; Gibney BR; Sharp RE; Dutton PL
    Biochemistry; 2000 Dec; 39(48):14813-21. PubMed ID: 11101297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Histidine placement in de novo-designed heme proteins.
    Gibney BR; Dutton PL
    Protein Sci; 1999 Sep; 8(9):1888-98. PubMed ID: 10493590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic investigation into the mechanisms of proton-coupled electron transfer events in heme protein maquettes.
    Reddi AR; Reedy CJ; Mui S; Gibney BR
    Biochemistry; 2007 Jan; 46(1):291-305. PubMed ID: 17198400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proof of principle in a de novo designed protein maquette: an allosterically regulated, charge-activated conformational switch in a tetra-alpha-helix bundle.
    Grosset AM; Gibney BR; Rabanal F; Moser CC; Dutton PL
    Biochemistry; 2001 May; 40(18):5474-87. PubMed ID: 11331012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and electronic properties of the heme cofactors in a multi-heme synthetic cytochrome.
    Kalsbeck WA; Robertson DE; Pandey RK; Smith KM; Dutton PL; Bocian DF
    Biochemistry; 1996 Mar; 35(11):3429-38. PubMed ID: 8639493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating the roles of the heme a side chains in cytochrome c oxidase using designed heme proteins.
    Zhuang J; Reddi AR; Wang Z; Khodaverdian B; Hegg EL; Gibney BR
    Biochemistry; 2006 Oct; 45(41):12530-8. PubMed ID: 17029408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonnatural amino acid ligands in heme protein design.
    Privett HK; Reedy CJ; Kennedy ML; Gibney BR
    J Am Chem Soc; 2002 Jun; 124(24):6828-9. PubMed ID: 12059195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of amphiphilic protein maquettes: controlling assembly, membrane insertion, and cofactor interactions.
    Discher BM; Noy D; Strzalka J; Ye S; Moser CC; Lear JD; Blasie JK; Dutton PL
    Biochemistry; 2005 Sep; 44(37):12329-43. PubMed ID: 16156646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of a five-coordinate heme protein maquette: a spectroscopic model of deoxymyoglobin.
    Zhuang J; Amoroso JH; Kinloch R; Dawson JH; Baldwin MJ; Gibney BR
    Inorg Chem; 2004 Dec; 43(26):8218-20. PubMed ID: 15606161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of electron-withdrawing group effects on heme binding in designed proteins: implications for heme a in cytochrome c oxidase.
    Zhuang J; Amoroso JH; Kinloch R; Dawson JH; Baldwin MJ; Gibney BR
    Inorg Chem; 2006 Jun; 45(12):4685-94. PubMed ID: 16749832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical and spectroscopic investigations of immobilized de novo designed heme proteins on metal electrodes.
    Albrecht T; Li W; Ulstrup J; Haehnel W; Hildebrandt P
    Chemphyschem; 2005 May; 6(5):961-70. PubMed ID: 15884083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design, synthesis, and characterization of a novel hemoprotein.
    Xu Z; Farid RS
    Protein Sci; 2001 Feb; 10(2):236-49. PubMed ID: 11266610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functionalized de novo designed proteins: mechanism of proton coupling to oxidation/reduction in heme protein maquettes.
    Shifman JM; Moser CC; Kalsbeck WA; Bocian DF; Dutton PL
    Biochemistry; 1998 Nov; 37(47):16815-27. PubMed ID: 9843452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. X-ray structure of a maquette scaffold.
    Huang SS; Gibney BR; Stayrook SE; Leslie Dutton P; Lewis M
    J Mol Biol; 2003 Feb; 326(4):1219-25. PubMed ID: 12589764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. De novo design of a D2-symmetrical protein that reproduces the diheme four-helix bundle in cytochrome bc1.
    Ghirlanda G; Osyczka A; Liu W; Antolovich M; Smith KM; Dutton PL; Wand AJ; DeGrado WF
    J Am Chem Soc; 2004 Jul; 126(26):8141-7. PubMed ID: 15225055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of the electrochemistry of hemes with E(m)s spanning 800 mV.
    Zheng Z; Gunner MR
    Proteins; 2009 May; 75(3):719-34. PubMed ID: 19003997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.