BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 11524380)

  • 1. HOMSTRAD: adding sequence information to structure-based alignments of homologous protein families.
    de Bakker PI; Bateman A; Burke DF; Miguel RN; Mizuguchi K; Shi J; Shirai H; Blundell TL
    Bioinformatics; 2001 Aug; 17(8):748-9. PubMed ID: 11524380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HOMSTRAD: recent developments of the Homologous Protein Structure Alignment Database.
    Stebbings LA; Mizuguchi K
    Nucleic Acids Res; 2004 Jan; 32(Database issue):D203-7. PubMed ID: 14681395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FUGUE: sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties.
    Shi J; Blundell TL; Mizuguchi K
    J Mol Biol; 2001 Jun; 310(1):243-57. PubMed ID: 11419950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HOMSTRAD: a database of protein structure alignments for homologous families.
    Mizuguchi K; Deane CM; Blundell TL; Overington JP
    Protein Sci; 1998 Nov; 7(11):2469-71. PubMed ID: 9828015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. JOY: protein sequence-structure representation and analysis.
    Mizuguchi K; Deane CM; Blundell TL; Johnson MS; Overington JP
    Bioinformatics; 1998; 14(7):617-23. PubMed ID: 9730927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An iterative structure-assisted approach to sequence alignment and comparative modeling.
    Burke DF; Deane CM; Nagarajaram HA; Campillo N; Martin-Martinez M; Mendes J; Molina F; Perry J; Reddy BV; Soares CM; Steward RE; Williams M; Carrondo MA; Blundell TL; Mizuguchi K
    Proteins; 1999; Suppl 3():55-60. PubMed ID: 10526352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequence-structure homology recognition by iterative alignment refinement and comparative modeling.
    Williams MG; Shirai H; Shi J; Nagendra HG; Mueller J; Mizuguchi K; Miguel RN; Lovell SC; Innis CA; Deane CM; Chen L; Campillo N; Burke DF; Blundell TL; de Bakker PI
    Proteins; 2001; Suppl 5():92-7. PubMed ID: 11835486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DBAli: a database of protein structure alignments.
    Martí-Renom MA; Ilyin VA; Sali A
    Bioinformatics; 2001 Aug; 17(8):746-7. PubMed ID: 11524379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequence patterns derived from the automated prediction of functional residues in structurally-aligned homologous protein families.
    Miguel RN
    Bioinformatics; 2004 Oct; 20(15):2380-9. PubMed ID: 15073006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iterative sequence/secondary structure search for protein homologs: comparison with amino acid sequence alignments and application to fold recognition in genome databases.
    Wallqvist A; Fukunishi Y; Murphy LR; Fadel A; Levy RM
    Bioinformatics; 2000 Nov; 16(11):988-1002. PubMed ID: 11159310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SUPFAM--a database of potential protein superfamily relationships derived by comparing sequence-based and structure-based families: implications for structural genomics and function annotation in genomes.
    Pandit SB; Gosar D; Abhiman S; Sujatha S; Dixit SS; Mhatre NS; Sowdhamini R; Srinivasan N
    Nucleic Acids Res; 2002 Jan; 30(1):289-93. PubMed ID: 11752317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The use of structure information to increase alignment accuracy does not aid homologue detection with profile HMMs.
    Griffiths-Jones S; Bateman A
    Bioinformatics; 2002 Sep; 18(9):1243-9. PubMed ID: 12217916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. LigBase: a database of families of aligned ligand binding sites in known protein sequences and structures.
    Stuart AC; Ilyin VA; Sali A
    Bioinformatics; 2002 Jan; 18(1):200-1. PubMed ID: 11836232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EyeSite: a semi-automated database of protein families in the eye.
    Lee DA; Fefeu S; Edo-Ukeh AA; Orengo CA; Slingsby C
    Nucleic Acids Res; 2004 Jan; 32(Database issue):D148-52. PubMed ID: 14681381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ulla: a program for calculating environment-specific amino acid substitution tables.
    Lee S; Blundell TL
    Bioinformatics; 2009 Aug; 25(15):1976-7. PubMed ID: 19417059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Definition of the tempo of sequence diversity across an alignment and automatic identification of sequence motifs: Application to protein homologous families and superfamilies.
    May AC
    Protein Sci; 2002 Dec; 11(12):2825-35. PubMed ID: 12441381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Pfam protein families database.
    Bateman A; Birney E; Cerruti L; Durbin R; Etwiller L; Eddy SR; Griffiths-Jones S; Howe KL; Marshall M; Sonnhammer EL
    Nucleic Acids Res; 2002 Jan; 30(1):276-80. PubMed ID: 11752314
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal classification of protein sequences and selection of representative sets from multiple alignments: application to homologous families and lessons for structural genomics.
    May AC
    Protein Eng; 2001 Apr; 14(4):209-17. PubMed ID: 11391012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3DCoffee: combining protein sequences and structures within multiple sequence alignments.
    O'Sullivan O; Suhre K; Abergel C; Higgins DG; Notredame C
    J Mol Biol; 2004 Jul; 340(2):385-95. PubMed ID: 15201059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Easier threading through web-based comparisons and cross-validations.
    Douguet D; Labesse G
    Bioinformatics; 2001 Aug; 17(8):752-3. PubMed ID: 11524382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.