BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

29 related articles for article (PubMed ID: 11524418)

  • 1. Conserved residues within the HIV-1 Vpu transmembrane-proximal hinge region modulate BST2 binding and antagonism.
    Lukhele S; Cohen ÉA
    Retrovirology; 2017 Mar; 14(1):18. PubMed ID: 28288652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of Specific Effect of Chloride on the Spectral Properties and Structural Stability of Multiple Extracellular Glutamic Acid Mutants of Bacteriorhodopsin.
    Lazarova T; Mlynarczyk K; Querol E; Tenchov B; Filipek S; Padrós E
    PLoS One; 2016; 11(9):e0162952. PubMed ID: 27657718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing a polar cluster in the retinal binding pocket of bacteriorhodopsin by a chemical design approach.
    Simón-Vázquez R; Domínguez M; Lórenz-Fonfría VA; Alvarez S; Bourdelande JL; de Lera AR; Padrós E; Perálvarez-Marín A
    PLoS One; 2012; 7(8):e42447. PubMed ID: 22879987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combination of extended X-ray absorption fine structure spectroscopy with lipidic cubic phases for the study of cation binding in bacteriorhodopsin.
    Perálvarez-Marín A; Sepulcre F; Márquez M; Proietti MG; Padrós E
    Eur Biophys J; 2011 Aug; 40(8):1007-12. PubMed ID: 21667310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photochemical and thermal stability of green and blue proteorhodopsins: implications for protein-based bioelectronic devices.
    Ranaghan MJ; Shima S; Ramos L; Poulin DS; Whited G; Rajasekaran S; Stuart JA; Albert AD; Birge RR
    J Phys Chem B; 2010 Nov; 114(44):14064-70. PubMed ID: 20964279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of proline on the thermostability of the active site and membrane arrangement of transmembrane proteins.
    Perálvarez-Marín A; Lórenz-Fonfría VA; Simón-Vázquez R; Gomariz M; Meseguer I; Querol E; Padrós E
    Biophys J; 2008 Nov; 95(9):4384-95. PubMed ID: 18658225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of extracellular glutamic acids in the stability and energy landscape of bacteriorhodopsin.
    Sapra KT; Doehner J; Renugopalakrishnan V; Padrós E; Muller DJ
    Biophys J; 2008 Oct; 95(7):3407-18. PubMed ID: 18621827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrostatic and steric interactions determine bacteriorhodopsin single-molecule biomechanics.
    Voïtchovsky K; Contera SA; Ryan JF
    Biophys J; 2007 Sep; 93(6):2024-37. PubMed ID: 17513362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A quantitative XANES analysis of the calcium high-affinity binding site of the purple membrane.
    Sepulcre F; Proietti MG; Benfatto M; Della Longa S; García J; Padrós E
    Biophys J; 2004 Jul; 87(1):513-20. PubMed ID: 15240484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proton transfer reactions in native and deionized bacteriorhodopsin upon delipidation and monomerization.
    Heyes CD; El-Sayed MA
    Biophys J; 2003 Jul; 85(1):426-34. PubMed ID: 12829497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Specific effects of chloride on the photocycle of E194Q and E204Q mutants of bacteriorhodopsin as measured by FTIR spectroscopy.
    Lazarova T; Sanz C; Sepulcre F; Querol E; Padrós E
    Biochemistry; 2002 Jun; 41(25):8176-83. PubMed ID: 12069610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glutamic acid residues of bacteriorhodopsin at the extracellular surface as determinants for conformation and dynamics as revealed by site-directed solid-state 13C NMR.
    Saitô H; Yamaguchi S; Ogawa K; Tuzi S; Márquez M; Sanz C; Padrós E
    Biophys J; 2004 Mar; 86(3):1673-81. PubMed ID: 14990495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coupling of electron transfer to proton uptake at the Q(B) site of the bacterial reaction center: a perspective from FTIR difference spectroscopy.
    Nabedryk E; Breton J
    Biochim Biophys Acta; 2008 Oct; 1777(10):1229-48. PubMed ID: 18671937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atomic resolution structures of bacteriorhodopsin photocycle intermediates: the role of discrete water molecules in the function of this light-driven ion pump.
    Luecke H
    Biochim Biophys Acta; 2000 Aug; 1460(1):133-56. PubMed ID: 10984596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of extracellular Glu residues to the structure and function of bacteriorhodopsin. Presence of specific cation-binding sites.
    Sanz C; Márquez M; Perálvarez A; Elouatik S; Sepulcre F; Querol E; Lazarova T; Padrós E
    J Biol Chem; 2001 Nov; 276(44):40788-94. PubMed ID: 11524418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fourier transform infrared evidence for early deprotonation of Asp(85) at alkaline pH in the photocycle of bacteriorhodopsin mutants containing E194Q.
    Lazarova T; Sanz C; Querol E; Padrós E
    Biophys J; 2000 Apr; 78(4):2022-30. PubMed ID: 10733980
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.