These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 11524684)

  • 1. Manipulation of ligand binding affinity by exploitation of conformational coupling.
    Marvin JS; Hellinga HW
    Nat Struct Biol; 2001 Sep; 8(9):795-8. PubMed ID: 11524684
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Converting a maltose receptor into a nascent binuclear copper oxygenase by computational design.
    Benson DE; Haddy AE; Hellinga HW
    Biochemistry; 2002 Mar; 41(9):3262-9. PubMed ID: 11863465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Residues in the alpha helix 7 of the bacterial maltose binding protein which are important in interactions with the Mal FGK2 complex.
    Szmelcman S; Sassoon N; Hofnung M
    Protein Sci; 1997 Mar; 6(3):628-36. PubMed ID: 9070445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two modes of ligand binding in maltose-binding protein of Escherichia coli. Electron paramagnetic resonance study of ligand-induced global conformational changes by site-directed spin labeling.
    Hall JA; Thorgeirsson TE; Liu J; Shin YK; Nikaido H
    J Biol Chem; 1997 Jul; 272(28):17610-4. PubMed ID: 9211909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insights into the conformational equilibria of maltose-binding protein by analysis of high affinity mutants.
    Telmer PG; Shilton BH
    J Biol Chem; 2003 Sep; 278(36):34555-67. PubMed ID: 12794084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structures and solution conformations of a dominant-negative mutant of Escherichia coli maltose-binding protein.
    Shilton BH; Shuman HA; Mowbray SL
    J Mol Biol; 1996 Nov; 264(2):364-76. PubMed ID: 8951382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic approach to the role of tryptophan residues in the activities and fluorescence of a bacterial periplasmic maltose-binding protein.
    Martineau P; Szmelcman S; Spurlino JC; Quiocho FA; Hofnung M
    J Mol Biol; 1990 Jul; 214(1):337-52. PubMed ID: 2196376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of a catalytic intermediate of the maltose transporter.
    Oldham ML; Khare D; Quiocho FA; Davidson AL; Chen J
    Nature; 2007 Nov; 450(7169):515-21. PubMed ID: 18033289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Associative properties of the Escherichia coli galactose-binding protein and maltose-binding protein.
    Richarme G
    Biochim Biophys Acta; 1983 Oct; 748(1):99-108. PubMed ID: 6351927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineered synthetic antibodies as probes to quantify the energetic contributions of ligand binding to conformational changes in proteins.
    Mukherjee S; Griffin DH; Horn JR; Rizk SS; Nocula-Lugowska M; Malmqvist M; Kim SS; Kossiakoff AA
    J Biol Chem; 2018 Feb; 293(8):2815-2828. PubMed ID: 29321208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structures of the maltodextrin/maltose-binding protein complexed with reduced oligosaccharides: flexibility of tertiary structure and ligand binding.
    Duan X; Hall JA; Nikaido H; Quiocho FA
    J Mol Biol; 2001 Mar; 306(5):1115-26. PubMed ID: 11237621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic analysis of periplasmic binding protein dependent transport in Escherichia coli. Each lobe of maltose-binding protein interacts with a different subunit of the MalFGK2 membrane transport complex.
    Hor LI; Shuman HA
    J Mol Biol; 1993 Oct; 233(4):659-70. PubMed ID: 8411172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering the maltose binding protein for reagentless fluorescence sensing.
    Gilardi G; Zhou LQ; Hibbert L; Cass AE
    Anal Chem; 1994 Nov; 66(21):3840-7. PubMed ID: 7802263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The rational design of allosteric interactions in a monomeric protein and its applications to the construction of biosensors.
    Marvin JS; Corcoran EE; Hattangadi NA; Zhang JV; Gere SA; Hellinga HW
    Proc Natl Acad Sci U S A; 1997 Apr; 94(9):4366-71. PubMed ID: 9113995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conversion of a maltose receptor into a zinc biosensor by computational design.
    Marvin JS; Hellinga HW
    Proc Natl Acad Sci U S A; 2001 Apr; 98(9):4955-60. PubMed ID: 11320244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of SecB with intermediates along the folding pathway of maltose-binding protein.
    Diamond DL; Strobel S; Chun SY; Randall LL
    Protein Sci; 1995 Jun; 4(6):1118-23. PubMed ID: 7549876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of the binding frame within a physiological ligand for the chaperone SecB.
    Topping TB; Randall LL
    Protein Sci; 1994 May; 3(5):730-6. PubMed ID: 8061603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disordered N-terminal residues affect the folding thermodynamics and kinetics of maltose binding protein.
    Ganesh C; Banerjee A; Shah A; Varadarajan R
    FEBS Lett; 1999 Jul; 454(3):307-11. PubMed ID: 10431828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vanadate-catalyzed photocleavage of the signature motif of an ATP-binding cassette (ABC) transporter.
    Fetsch EE; Davidson AL
    Proc Natl Acad Sci U S A; 2002 Jul; 99(15):9685-90. PubMed ID: 12093921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The crystal structure of a liganded trehalose/maltose-binding protein from the hyperthermophilic Archaeon Thermococcus litoralis at 1.85 A.
    Diez J; Diederichs K; Greller G; Horlacher R; Boos W; Welte W
    J Mol Biol; 2001 Jan; 305(4):905-15. PubMed ID: 11162101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.