These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 11525491)
1. A 48-h larval development toxicity test using the marine polychaete Galeolaria caespitosa Lamarck (Fam. Serpulidae). Ross KE; Bidwell JR Arch Environ Contam Toxicol; 2001 May; 40(4):489-96. PubMed ID: 11525491 [TBL] [Abstract][Full Text] [Related]
2. Assessing the application of an additive model to estimate toxicity of a complex effluent. Ross KE; Bidwell JR J Environ Qual; 2003; 32(5):1677-83. PubMed ID: 14535308 [TBL] [Abstract][Full Text] [Related]
3. A scanning electron microscopic study of larval development in the marine polychaete, Galeolaria caespitosa Lamarck (Serpulidae). Grant NJ Cell Tissue Res; 1981; 215(1):171-9. PubMed ID: 7226194 [TBL] [Abstract][Full Text] [Related]
4. Detailed analysis of the male reproductive system in a potential bio-indicator species - The marine invertebrate Galeolaria caespitosa (Polychaeta: Serpulidae). Lu Y; Aitken RJ; Lin M PLoS One; 2017; 12(4):e0174907. PubMed ID: 28369153 [TBL] [Abstract][Full Text] [Related]
5. Sperm swimming in the polychaete Galeolaria caespitosa shows substantial inter-individual variability in response to future ocean acidification. Schlegel P; Havenhand JN; Obadia N; Williamson JE Mar Pollut Bull; 2014 Jan; 78(1-2):213-7. PubMed ID: 24239098 [TBL] [Abstract][Full Text] [Related]
6. Life stage sensitivity of the marine mussel Mytilus edulis to ammonia. Kennedy AJ; Lindsay JH; Biedenbach JM; Harmon AR Environ Toxicol Chem; 2017 Jan; 36(1):89-95. PubMed ID: 27207187 [TBL] [Abstract][Full Text] [Related]
7. Effluent toxicity test using developmental stages of the marine polychaete Hydroides elegans. Thilagam H; Gopalakrishnan S; Vijayavel K; Raja PV Arch Environ Contam Toxicol; 2008 May; 54(4):674-83. PubMed ID: 18317832 [TBL] [Abstract][Full Text] [Related]
8. Exposure of spermatozoa to dibutyl phthalate induces abnormal embryonic development in a marine invertebrate Galeolaria caespitosa (Polychaeta: Serpulidae). Lu Y; Lin M; Aitken RJ Aquat Toxicol; 2017 Oct; 191():189-200. PubMed ID: 28843738 [TBL] [Abstract][Full Text] [Related]
9. Comparative sensitivity of the cnidarian Exaiptasia pallida and a standard toxicity test suite: testing whole effluents intended for ocean disposal. Howe PL; Reichelt-Brushett AJ; Krassoi R; Micevska T Environ Sci Pollut Res Int; 2015 Sep; 22(17):13225-33. PubMed ID: 25940467 [TBL] [Abstract][Full Text] [Related]
10. Anaphase aberrations in the embryos of the marine tubeworm Pomatoceros lamarckii (Polychaeta: Serpulidae): a new in vivo test assay for detecting aneugens and clastogens in the marine environment. Dixon DR; Wilson JT; Pascoe PL; Parry JM Mutagenesis; 1999 Jul; 14(4):375-83. PubMed ID: 10390504 [TBL] [Abstract][Full Text] [Related]
11. Importance of sperm density in assessing the toxicity of metals to the fertilization of broadcast spawners. Lockyer A; Binet MT; Styan CA Ecotoxicol Environ Saf; 2019 May; 172():547-555. PubMed ID: 30772738 [TBL] [Abstract][Full Text] [Related]
12. Comparison of heavy metal toxicity in life stages (spermiotoxicity, egg toxicity, embryotoxicity and larval toxicity) of Hydroides elegans. Gopalakrishnan S; Thilagam H; Raja PV Chemosphere; 2008 Mar; 71(3):515-28. PubMed ID: 18022210 [TBL] [Abstract][Full Text] [Related]
13. Dependency of copper toxicity to polychaete larvae on algal concentration. Wong NC; Wong MH; Shiu KK; Qiu JW Aquat Toxicol; 2006 May; 77(2):117-25. PubMed ID: 16356560 [TBL] [Abstract][Full Text] [Related]
14. Assessing contaminant sensitivity of endangered and threatened aquatic species: part III. Effluent toxicity tests. Dwyer FJ; Hardesty DK; Henke CE; Ingersoll CG; Whites DW; Augspurger T; Canfield TJ; Mount DR; Mayer FL Arch Environ Contam Toxicol; 2005 Feb; 48(2):174-83. PubMed ID: 15750777 [TBL] [Abstract][Full Text] [Related]
15. A postexposure feeding assay using the marine polychaete Neanthes arenaceodentata suitable for laboratory and in situ exposures. Rosen G; Miller K Environ Toxicol Chem; 2011 Mar; 30(3):730-7. PubMed ID: 21298715 [TBL] [Abstract][Full Text] [Related]
16. Development of a sublethal test to determine the effects of copper and lead on scleractinian coral larvae. Reichelt-Brushett AJ; Harrison PL Arch Environ Contam Toxicol; 2004 Jul; 47(1):40-55. PubMed ID: 15346777 [TBL] [Abstract][Full Text] [Related]
17. A chronic toxicity test for the tropical marine snail Nassarius dorsatus to assess the toxicity of copper, aluminium, gallium, and molybdenum. Trenfield MA; van Dam JW; Harford AJ; Parry D; Streten C; Gibb K; van Dam RA Environ Toxicol Chem; 2016 Jul; 35(7):1788-95. PubMed ID: 26643415 [TBL] [Abstract][Full Text] [Related]
18. Comparison of methods for evaluating acute and chronic toxicity in marine sediments. Greenstein D; Bay S; Anderson B; Chandler GT; Farrar JD; Keppler C; Phillips B; Ringwood A; Young D Environ Toxicol Chem; 2008 Apr; 27(4):933-44. PubMed ID: 18333680 [TBL] [Abstract][Full Text] [Related]
19. Development of an improved rapid enzyme inhibition bioassay with marine and freshwater microalgae using flow cytometry. Franklin NM; Adams MS; Stauber JL; Lim RP Arch Environ Contam Toxicol; 2001 May; 40(4):469-80. PubMed ID: 11525489 [TBL] [Abstract][Full Text] [Related]
20. The development of marine Toxicity Identification Evaluation (TIE) procedures using the unicellular alga Nitzschia closterium. Hogan AC; Stauber JL; Pablo F; Adams MS; Lim RP Arch Environ Contam Toxicol; 2005 May; 48(4):433-43. PubMed ID: 15883677 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]