These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

532 related articles for article (PubMed ID: 11525504)

  • 21. Developing tools for phytoremediation: towards a molecular understanding of plant metal tolerance and accumulation.
    Clemens S
    Int J Occup Med Environ Health; 2001; 14(3):235-9. PubMed ID: 11764851
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genetic engineering of Escherichia coli for enhanced uptake and bioaccumulation of mercury.
    Bae W; Mehra RK; Mulchandani A; Chen W
    Appl Environ Microbiol; 2001 Nov; 67(11):5335-8. PubMed ID: 11679366
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Toxicity of heavy metals and metal-containing nanoparticles on plants.
    Mustafa G; Komatsu S
    Biochim Biophys Acta; 2016 Aug; 1864(8):932-44. PubMed ID: 26940747
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Homo-phytochelatins are synthesized in response to cadmium in azuki beans.
    Oven M; Raith K; Neubert RH; Kutchan TM; Zenk MH
    Plant Physiol; 2001 Jul; 126(3):1275-80. PubMed ID: 11457978
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Plant responses to metal toxicity.
    Briat JF; Lebrun M
    C R Acad Sci III; 1999 Jan; 322(1):43-54. PubMed ID: 10047953
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Phytochelatins--heavy metal-binding peptides of plants].
    Tukendorf A
    Postepy Biochem; 1993; 39(1):60-7. PubMed ID: 8516249
    [No Abstract]   [Full Text] [Related]  

  • 27. Mechanisms of heavy-metal sequestration and detoxification in crustaceans: a review.
    Ahearn GA; Mandal PK; Mandal A
    J Comp Physiol B; 2004 Aug; 174(6):439-52. PubMed ID: 15243714
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phytochelatin biosynthesis and function in heavy-metal detoxification.
    Cobbett CS
    Curr Opin Plant Biol; 2000 Jun; 3(3):211-6. PubMed ID: 10837262
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Low-molecular-weight ligands in plants: role in metal homeostasis and hyperaccumulation.
    Seregin IV; Kozhevnikova AD
    Photosynth Res; 2021 Dec; 150(1-3):51-96. PubMed ID: 32653983
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants.
    Clemens S
    Biochimie; 2006 Nov; 88(11):1707-19. PubMed ID: 16914250
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Vacuolar compartmentalization as indispensable component of heavy metal detoxification in plants.
    Sharma SS; Dietz KJ; Mimura T
    Plant Cell Environ; 2016 May; 39(5):1112-26. PubMed ID: 26729300
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biosynthetic regulation of phytochelatins, heavy metal-binding peptides.
    Hirata K; Tsuji N; Miyamoto K
    J Biosci Bioeng; 2005 Dec; 100(6):593-9. PubMed ID: 16473766
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization.
    Schützendübel A; Polle A
    J Exp Bot; 2002 May; 53(372):1351-65. PubMed ID: 11997381
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress.
    Sharma SS; Dietz KJ
    J Exp Bot; 2006; 57(4):711-26. PubMed ID: 16473893
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Managing heavy metal toxicity stress in plants: biological and biotechnological tools.
    Ovečka M; Takáč T
    Biotechnol Adv; 2014; 32(1):73-86. PubMed ID: 24333465
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure and function of metal chelators produced by plants: the case for organic acids, amino acids, phytin, and metallothioneins.
    Rauser WE
    Cell Biochem Biophys; 1999; 31(1):19-48. PubMed ID: 10505666
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recent developments in the application of proteomics to the analysis of plant responses to heavy metals.
    Ahsan N; Renaut J; Komatsu S
    Proteomics; 2009 May; 9(10):2602-21. PubMed ID: 19405030
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phytochelatins and related peptides. Structure, biosynthesis, and function.
    Rauser WE
    Plant Physiol; 1995 Dec; 109(4):1141-9. PubMed ID: 8539285
    [No Abstract]   [Full Text] [Related]  

  • 39. Advances in metal-induced oxidative stress and human disease.
    Jomova K; Valko M
    Toxicology; 2011 May; 283(2-3):65-87. PubMed ID: 21414382
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Vacuolar transporters and their essential role in plant metabolism.
    Martinoia E; Maeshima M; Neuhaus HE
    J Exp Bot; 2007; 58(1):83-102. PubMed ID: 17110589
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.