These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 11525612)

  • 1. The use of transgenic plants in the bioremediation of soils contaminated with trace elements.
    Krämer U; Chardonnens AN
    Appl Microbiol Biotechnol; 2001 Jun; 55(6):661-72. PubMed ID: 11525612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phytoremediation: an overview of metallic ion decontamination from soil.
    Singh OV; Labana S; Pandey G; Budhiraja R; Jain RK
    Appl Microbiol Biotechnol; 2003 Jun; 61(5-6):405-12. PubMed ID: 12764555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytoremediation of toxic trace elements in soil and water.
    LeDuc DL; Terry N
    J Ind Microbiol Biotechnol; 2005 Dec; 32(11-12):514-20. PubMed ID: 15883830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strategies for the engineered phytoremediation of toxic element pollution: mercury and arsenic.
    Meagher RB; Heaton AC
    J Ind Microbiol Biotechnol; 2005 Dec; 32(11-12):502-13. PubMed ID: 15995854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Can liming change root anatomy, biomass allocation and trace element distribution among plant parts of Salix × smithiana in trace element-polluted soils?
    Vondráčková S; Tlustoš P; Száková J
    Environ Sci Pollut Res Int; 2017 Aug; 24(23):19201-19210. PubMed ID: 28664494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Advances in the research of genetic engineering of heavy metal resistance and accumulation in plants].
    Lang ML; Zhang YX; Chai TY
    Sheng Wu Gong Cheng Xue Bao; 2004 Mar; 20(2):157-64. PubMed ID: 15969101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation.
    Khan AG
    J Trace Elem Med Biol; 2005; 18(4):355-64. PubMed ID: 16028497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arbuscular mycorrhizal fungi in phytoremediation of contaminated areas by trace elements: mechanisms and major benefits of their applications.
    Cabral L; Soares CR; Giachini AJ; Siqueira JO
    World J Microbiol Biotechnol; 2015 Nov; 31(11):1655-64. PubMed ID: 26250548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced and Complete Removal of Phenylurea Herbicides by Combinational Transgenic Plant-Microbe Remediation.
    Yan X; Huang J; Xu X; Chen D; Xie X; Tao Q; He J; Jiang J
    Appl Environ Microbiol; 2018 Jul; 84(14):. PubMed ID: 29752264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytoextraction of soil trace elements by willow during a phytoremediation trial in Southern Québec, Canada.
    Courchesne F; Turmel MC; Cloutier-Hurteau B; Constantineau S; Munro L; Labrecque M
    Int J Phytoremediation; 2017 Jun; 19(6):545-554. PubMed ID: 27996300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prospects of genetic engineering of plants for phytoremediation of toxic metals.
    Eapen S; D'Souza SF
    Biotechnol Adv; 2005 Mar; 23(2):97-114. PubMed ID: 15694122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth of Populus alba and its influence on soil trace element availability.
    Ciadamidaro L; Madejón E; Puschenreiter M; Madejón P
    Sci Total Environ; 2013 Jun; 454-455():337-47. PubMed ID: 23562686
    [TBL] [Abstract][Full Text] [Related]  

  • 13. About plant species potentially promising for phytoextraction of large amounts of toxic trace elements.
    Shtangeeva I
    Environ Geochem Health; 2021 Apr; 43(4):1689-1701. PubMed ID: 32607703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering arsenic tolerance and hyperaccumulation in plants for phytoremediation by a PvACR3 transgenic approach.
    Chen Y; Xu W; Shen H; Yan H; Xu W; He Z; Ma M
    Environ Sci Technol; 2013 Aug; 47(16):9355-62. PubMed ID: 23899224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phytoremediation: novel approaches to cleaning up polluted soils.
    Krämer U
    Curr Opin Biotechnol; 2005 Apr; 16(2):133-41. PubMed ID: 15831377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional components of the bacterial CzcCBA efflux system reduce cadmium uptake and accumulation in transgenic tobacco plants.
    Nesler A; DalCorso G; Fasani E; Manara A; Di Sansebastiano GP; Argese E; Furini A
    N Biotechnol; 2017 Mar; 35():54-61. PubMed ID: 27902938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soil plant microbe interactions in phytoremediation.
    Karthikeyan R; Kulakow PA
    Adv Biochem Eng Biotechnol; 2003; 78():51-74. PubMed ID: 12674398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phytoremediation of mercury and organomercurials in chloroplast transgenic plants: enhanced root uptake, translocation to shoots, and volatilization.
    Hussein HS; Ruiz ON; Terry N; Daniell H
    Environ Sci Technol; 2007 Dec; 41(24):8439-46. PubMed ID: 18200876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mercury uptake and phytotoxicity in terrestrial plants grown naturally in the Gumuskoy (Kutahya) mining area, Turkey.
    Sasmaz M; Akgül B; Yıldırım D; Sasmaz A
    Int J Phytoremediation; 2016; 18(1):69-76. PubMed ID: 26114359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biofortification and phytoremediation.
    Zhao FJ; McGrath SP
    Curr Opin Plant Biol; 2009 Jun; 12(3):373-80. PubMed ID: 19473871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.