These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 11525657)
21. In vitro metabolism of a model cyclopropylamine to reactive intermediate: insights into trovafloxacin-induced hepatotoxicity. Sun Q; Zhu R; Foss FW; Macdonald TL Chem Res Toxicol; 2008 Mar; 21(3):711-9. PubMed ID: 18298092 [TBL] [Abstract][Full Text] [Related]
22. Mechanism of acetaminophen-stimulated NADPH oxidation catalyzed by the peroxidase-H2O2 system. Keller RJ; Hinson JA Drug Metab Dispos; 1991; 19(1):184-7. PubMed ID: 1673396 [TBL] [Abstract][Full Text] [Related]
23. Microsomal P450-catalyzed N-dealkylation of N,N-dialkylanilines: evidence for a C(alpha)-H abstraction mechanism. Bhakta MN; Wimalasena K J Am Chem Soc; 2002 Mar; 124(9):1844-5. PubMed ID: 11866584 [TBL] [Abstract][Full Text] [Related]
24. The intrinsic axial ligand effect on propene oxidation by horseradish peroxidase versus cytochrome P450 enzymes. Kumar D; de Visser SP; Sharma PK; Derat E; Shaik S J Biol Inorg Chem; 2005 Mar; 10(2):181-9. PubMed ID: 15723206 [TBL] [Abstract][Full Text] [Related]
25. Concurrent reduction of iodine and oxidation of EDTA at the active site of horseradish peroxidase: probing the iodine binding site by optical difference spectroscopy and steady state kinetic analysis for the formation of active enzyme-I(+)-EDTA ternary complex for iodine reductase activity. Adak S; Bhattacharyya DK; Mazumder A; Bandyopadhyay U; Banerjee RK Biochemistry; 1995 Oct; 34(40):12998-3006. PubMed ID: 7548058 [TBL] [Abstract][Full Text] [Related]
26. Single turnover studies of oxidative halophenol dehalogenation by horseradish peroxidase reveal a mechanism involving two consecutive one electron steps: toward a functional halophenol bioremediation catalyst. Sumithran S; Sono M; Raner GM; Dawson JH J Inorg Biochem; 2012 Dec; 117():316-21. PubMed ID: 23102773 [TBL] [Abstract][Full Text] [Related]
27. One-electron oxidation of diclofenac by human cytochrome P450s as a potential bioactivation mechanism for formation of 2'-(glutathion-S-yl)-deschloro-diclofenac. Boerma JS; Vermeulen NP; Commandeur JN Chem Biol Interact; 2014 Jan; 207():32-40. PubMed ID: 24246759 [TBL] [Abstract][Full Text] [Related]
28. Differential substrate behaviour of phenol and aniline derivatives during conversion by horseradish peroxidase. Van Haandel MJ; Claassens MM; Van der Hout N; Boersma MG; Vervoort J; Rietjens IM Biochim Biophys Acta; 1999 Nov; 1435(1-2):22-9. PubMed ID: 10561534 [TBL] [Abstract][Full Text] [Related]
29. Scavenging of free-radical metabolites of aniline xenobiotics and drugs by amino acid derivatives: toxicological implications of radical-transfer reactions. Michail K; Baghdasarian A; Narwaley M; Aljuhani N; Siraki AG Chem Res Toxicol; 2013 Dec; 26(12):1872-83. PubMed ID: 24191655 [TBL] [Abstract][Full Text] [Related]
30. Prosthetic heme modification during halide ion oxidation. Demonstration of chloride oxidation by horseradish peroxidase. Huang L; Wojciechowski G; Ortiz de Montellano PR J Am Chem Soc; 2005 Apr; 127(15):5345-53. PubMed ID: 15826172 [TBL] [Abstract][Full Text] [Related]
31. Horseradish peroxidase-mediated aerobic and anaerobic oxidations of 3-alkylindoles. Ling KQ; Sayre LM Bioorg Med Chem; 2005 May; 13(10):3543-51. PubMed ID: 15848767 [TBL] [Abstract][Full Text] [Related]
32. Effects of cytochrome P450 inhibitors on peroxidase activity. Martinkova M; Kubickova B; Stiborova M Neuro Endocrinol Lett; 2012; 33 Suppl 3():33-40. PubMed ID: 23353841 [TBL] [Abstract][Full Text] [Related]
33. Transient and steady-state kinetics of the oxidation of scopoletin by horseradish peroxidase compounds I, II and III in the presence of NADH. Marquez LA; Dunford HB Eur J Biochem; 1995 Oct; 233(1):364-71. PubMed ID: 7588768 [TBL] [Abstract][Full Text] [Related]
34. Carbon, hydrogen, and nitrogen isotope fractionation associated with oxidative transformation of substituted aromatic N-alkyl amines. Skarpeli-Liati M; Pati SG; Bolotin J; Eustis SN; Hofstetter TB Environ Sci Technol; 2012 Jul; 46(13):7189-98. PubMed ID: 22681573 [TBL] [Abstract][Full Text] [Related]
35. Magnetic spin effects in enzymatic reactions: radical oxidation of NADH by horseradish peroxidase. Afanasyeva MS; Taraban MB; Purtov PA; Leshina TV; Grissom CB J Am Chem Soc; 2006 Jul; 128(26):8651-8. PubMed ID: 16802831 [TBL] [Abstract][Full Text] [Related]
36. Cyclopropylamine inactivation of cytochromes P450: role of metabolic intermediate complexes. Cerny MA; Hanzlik RP Arch Biochem Biophys; 2005 Apr; 436(2):265-75. PubMed ID: 15797239 [TBL] [Abstract][Full Text] [Related]
37. 18O studies of the peroxidase-catalyzed oxidation of N-methylcarbazole. Mechanisms of carbinolamine and carboxaldehyde formation. Kedderis GL; Rickert DE; Pandey RN; Hollenberg PF J Biol Chem; 1986 Dec; 261(34):15910-4. PubMed ID: 3782097 [TBL] [Abstract][Full Text] [Related]
38. [Formation mechanism of 4,4-methylenebis(N,N-dimethylaniline) by the anodic oxidation of N,N-dimethylaniline]. Michida T; Osawa E; Yamaoka Y Yakugaku Zasshi; 2001 Dec; 121(12):1005-10. PubMed ID: 11766400 [TBL] [Abstract][Full Text] [Related]
39. The first calibration of an aminiumyl radical ion clock: why N-cyclopropylanilines may be poor mechanistic probes for single electron transfer. Li X; Grimm ML; Igarashi K; Castagnoli N; Tanko JM Chem Commun (Camb); 2007 Jul; (25):2648-50. PubMed ID: 17579767 [TBL] [Abstract][Full Text] [Related]
40. Re-examination of the anodic oxidation of N,N-dimethylaniline, using parametric method 3. Michida T; Osawa E; Yamaoka Y Chem Pharm Bull (Tokyo); 2000 Sep; 48(9):1378-9. PubMed ID: 10993245 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]