These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 11525757)

  • 21. Reduced ocular dominance plasticity and long-term potentiation in the developing visual cortex of protein kinase A RII alpha mutant mice.
    Rao Y; Fischer QS; Yang Y; McKnight GS; LaRue A; Daw NW
    Eur J Neurosci; 2004 Aug; 20(3):837-42. PubMed ID: 15255994
    [TBL] [Abstract][Full Text] [Related]  

  • 22. T-type calcium channels regulate cortical plasticity in-vivo. [corrected].
    Uebele VN; Nuss CE; Santarelli VP; Garson SL; Kraus RL; Barrow JC; Stauffer SR; Koblan KS; Renger JJ; Aton S; Seibt J; Dumoulin M; Jha SK; Coleman T; Frank MG
    Neuroreport; 2009 Feb; 20(3):257-62. PubMed ID: 19212242
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Post-hatch activity-dependent modulation of visual asymmetry formation in pigeons.
    Prior H; Diekamp B; Güntürkün O; Manns M
    Neuroreport; 2004 Jun; 15(8):1311-4. PubMed ID: 15167556
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Swept contrast visual evoked potentials and their plasticity following monocular deprivation in mice.
    Lickey ME; Pham TA; Gordon B
    Vision Res; 2004 Dec; 44(28):3381-7. PubMed ID: 15536006
    [TBL] [Abstract][Full Text] [Related]  

  • 25. How monocular deprivation shifts ocular dominance in visual cortex of young mice.
    Frenkel MY; Bear MF
    Neuron; 2004 Dec; 44(6):917-23. PubMed ID: 15603735
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neural plasticity maintained high by activation of cyclic AMP-dependent protein kinase: an age-independent, general mechanism in cat striate cortex.
    Imamura K; Kasamatsu T; Tanaka S
    Neuroscience; 2007 Jun; 147(2):508-21. PubMed ID: 17544224
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Vascular endothelial growth factor B prevents the shift in the ocular dominance distribution of visual cortical neurons in monocularly deprived rats.
    Shan L; Yong H; Song Q; Wei Y; Qin R; Zhang G; Xu M; Zhang S
    Exp Eye Res; 2013 Apr; 109():17-21. PubMed ID: 23370270
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional masking of deprived eye responses by callosal input during ocular dominance plasticity.
    Restani L; Cerri C; Pietrasanta M; Gianfranceschi L; Maffei L; Caleo M
    Neuron; 2009 Dec; 64(5):707-18. PubMed ID: 20005826
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of visual experience in activating critical period in cat visual cortex.
    Mower GD; Christen WG
    J Neurophysiol; 1985 Feb; 53(2):572-89. PubMed ID: 3981230
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The sedating antidepressant trazodone impairs sleep-dependent cortical plasticity.
    Aton SJ; Seibt J; Dumoulin MC; Coleman T; Shiraishi M; Frank MG
    PLoS One; 2009 Jul; 4(7):e6078. PubMed ID: 19568418
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tissue plasminogen activator mediates reverse occlusion plasticity in visual cortex.
    Müller CM; Griesinger CB
    Nat Neurosci; 1998 May; 1(1):47-53. PubMed ID: 10195108
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Monocular deprivation in adult mice alters visual acuity and single-unit activity.
    Fischer QS; Graves A; Evans S; Lickey ME; Pham TA
    Learn Mem; 2007 Apr; 14(4):277-86. PubMed ID: 17522016
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sleep does not enhance the recovery of deprived eye responses in developing visual cortex.
    Dadvand L; Stryker MP; Frank MG
    Neuroscience; 2006 Dec; 143(3):815-26. PubMed ID: 17000056
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Homeostatic regulation of eye-specific responses in visual cortex during ocular dominance plasticity.
    Mrsic-Flogel TD; Hofer SB; Ohki K; Reid RC; Bonhoeffer T; Hübener M
    Neuron; 2007 Jun; 54(6):961-72. PubMed ID: 17582335
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A switch from inter-ocular to inter-hemispheric suppression following monocular deprivation in the rat visual cortex.
    Pietrasanta M; Restani L; Cerri C; Olcese U; Medini P; Caleo M
    Eur J Neurosci; 2014 Jul; 40(1):2283-92. PubMed ID: 24689940
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neuregulin-1/ErbB4 Signaling Regulates Visual Cortical Plasticity.
    Sun Y; Ikrar T; Davis MF; Gong N; Zheng X; Luo ZD; Lai C; Mei L; Holmes TC; Gandhi SP; Xu X
    Neuron; 2016 Oct; 92(1):160-173. PubMed ID: 27641496
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Brief dark exposure restored ocular dominance plasticity in aging mice and after a cortical stroke.
    Stodieck SK; Greifzu F; Goetze B; Schmidt KF; Löwel S
    Exp Gerontol; 2014 Dec; 60():1-11. PubMed ID: 25220148
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Experience-dependent slow-wave sleep development.
    Miyamoto H; Katagiri H; Hensch T
    Nat Neurosci; 2003 Jun; 6(6):553-4. PubMed ID: 12754515
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Experience-dependent DNA methylation regulates plasticity in the developing visual cortex.
    Tognini P; Napoli D; Tola J; Silingardi D; Della Ragione F; D'Esposito M; Pizzorusso T
    Nat Neurosci; 2015 Jul; 18(7):956-8. PubMed ID: 26005848
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular basis of plasticity in the visual cortex.
    Berardi N; Pizzorusso T; Ratto GM; Maffei L
    Trends Neurosci; 2003 Jul; 26(7):369-78. PubMed ID: 12850433
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.