These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 11525976)
1. Flux analysis of the metabolism of Clostridium cellulolyticum grown in cellulose-fed continuous culture on a chemically defined medium under ammonium-limited conditions. Desvaux M; Petitdemange H Appl Environ Microbiol; 2001 Sep; 67(9):3846-51. PubMed ID: 11525976 [TBL] [Abstract][Full Text] [Related]
2. Carbon flux distribution and kinetics of cellulose fermentation in steady-state continuous cultures of Clostridium cellulolyticum on a chemically defined medium. Desvaux M; Guedon E; Petitdemange H J Bacteriol; 2001 Jan; 183(1):119-30. PubMed ID: 11114908 [TBL] [Abstract][Full Text] [Related]
3. Kinetics and metabolism of cellulose degradation at high substrate concentrations in steady-state continuous cultures of Clostridium cellulolyticum on a chemically defined medium. Desvaux M; Guedon E; Petitdemange H Appl Environ Microbiol; 2001 Sep; 67(9):3837-45. PubMed ID: 11525975 [TBL] [Abstract][Full Text] [Related]
4. Metabolic flux in cellulose batch and cellulose-fed continuous cultures of Clostridium cellulolyticum in response to acidic environment. Desvaux M; Guedon E; Petitdemange H Microbiology (Reading); 2001 Jun; 147(Pt 6):1461-1471. PubMed ID: 11390677 [TBL] [Abstract][Full Text] [Related]
5. Cellulose catabolism by Clostridium cellulolyticum growing in batch culture on defined medium. Desvaux M; Guedon E; Petitdemange H Appl Environ Microbiol; 2000 Jun; 66(6):2461-70. PubMed ID: 10831425 [TBL] [Abstract][Full Text] [Related]
6. Kinetic analysis of Clostridium cellulolyticum carbohydrate metabolism: importance of glucose 1-phosphate and glucose 6-phosphate branch points for distribution of carbon fluxes inside and outside cells as revealed by steady-state continuous culture. Guedon E; Desvaux M; Petitdemange H J Bacteriol; 2000 Apr; 182(7):2010-7. PubMed ID: 10715010 [TBL] [Abstract][Full Text] [Related]
7. Clostridium cellulolyticum: model organism of mesophilic cellulolytic clostridia. Desvaux M FEMS Microbiol Rev; 2005 Sep; 29(4):741-64. PubMed ID: 16102601 [TBL] [Abstract][Full Text] [Related]
8. Relationships between cellobiose catabolism, enzyme levels, and metabolic intermediates in Clostridium cellulolyticum grown in a synthetic medium. Guedon E; Payot S; Desvaux M; Petitdemange H Biotechnol Bioeng; 2000 Feb; 67(3):327-35. PubMed ID: 10620263 [TBL] [Abstract][Full Text] [Related]
9. Sporulation of Clostridium cellulolyticum while grown in cellulose-batch and cellulose-fed continuous cultures on a mineral-salt based medium. Desvaux M; Petitdemange H Microb Ecol; 2002 Mar; 43(2):271-9. PubMed ID: 12023734 [TBL] [Abstract][Full Text] [Related]
10. Studies of Clostridium cellulolyticum ATCC 35319 under dialysis and co-culture conditions. Gehin A; Cailliez C; Petitdemange E; Benoit L Lett Appl Microbiol; 1996 Oct; 23(4):208-12. PubMed ID: 8987692 [TBL] [Abstract][Full Text] [Related]
11. Characterization of the cellulolytic and hydrogen-producing activities of six mesophilic Clostridium species. Ren Z; Ward TE; Logan BE; Regan JM J Appl Microbiol; 2007 Dec; 103(6):2258-66. PubMed ID: 18045409 [TBL] [Abstract][Full Text] [Related]
12. Carbon and electron flow in Clostridium cellulolyticum grown in chemostat culture on synthetic medium. Guedon E; Payot S; Desvaux M; Petitdemange H J Bacteriol; 1999 May; 181(10):3262-9. PubMed ID: 10322031 [TBL] [Abstract][Full Text] [Related]
13. Growth inhibition of Clostridium cellulolyticum by an inefficiently regulated carbon flow. Guedon E; Desvaux M; Payot S; Petitdemange H Microbiology (Reading); 1999 Aug; 145 ( Pt 8)():1831-1838. PubMed ID: 10463149 [TBL] [Abstract][Full Text] [Related]
14. Transcriptomic and proteomic analyses of core metabolism in Clostridium termitidis CT1112 during growth on α-cellulose, xylan, cellobiose and xylose. Munir RI; Spicer V; Krokhin OV; Shamshurin D; Zhang X; Taillefer M; Blunt W; Cicek N; Sparling R; Levin DB BMC Microbiol; 2016 May; 16():91. PubMed ID: 27215540 [TBL] [Abstract][Full Text] [Related]
15. Effect of dilution rate, cellobiose and ammonium availabilities on Clostridium cellulolyticum sporulation. Payot S; Guedon E; Desvaux M; Gelhaye E; Petitdemange E Appl Microbiol Biotechnol; 1999 Nov; 52(5):670-4. PubMed ID: 10570814 [TBL] [Abstract][Full Text] [Related]
16. Improvement of cellulolytic properties of Clostridium cellulolyticum by metabolic engineering. Guedon E; Desvaux M; Petitdemange H Appl Environ Microbiol; 2002 Jan; 68(1):53-8. PubMed ID: 11772608 [TBL] [Abstract][Full Text] [Related]
18. Induction of lactate production associated with a decrease in NADH cell content enables growth resumption of Clostridium cellulolyticum in batch cultures on cellobiose. Payot S; Guedon E; Gelhaye E; Petitdemange H Res Microbiol; 1999 Sep; 150(7):465-73. PubMed ID: 10540910 [TBL] [Abstract][Full Text] [Related]
19. The effect of cellobiose, glucose, and cellulose on the survival of Fibrobacter succinogenes A3C cultures grown under ammonia limitation. Thomas S; Russell JB Curr Microbiol; 2004 Mar; 48(3):219-23. PubMed ID: 15057469 [TBL] [Abstract][Full Text] [Related]
20. Expression of 17 genes in Clostridium thermocellum ATCC 27405 during fermentation of cellulose or cellobiose in continuous culture. Stevenson DM; Weimer PJ Appl Environ Microbiol; 2005 Aug; 71(8):4672-8. PubMed ID: 16085862 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]