These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 11526080)
21. Photosynthetic flexibility in maize exposed to salinity and shade. Sharwood RE; Sonawane BV; Ghannoum O J Exp Bot; 2014 Jul; 65(13):3715-24. PubMed ID: 24692650 [TBL] [Abstract][Full Text] [Related]
22. The operation of two decarboxylases, transamination, and partitioning of C4 metabolic processes between mesophyll and bundle sheath cells allows light capture to be balanced for the maize C4 pathway. Bellasio C; Griffiths H Plant Physiol; 2014 Jan; 164(1):466-80. PubMed ID: 24254314 [TBL] [Abstract][Full Text] [Related]
23. Evolutionary convergence of cell-specific gene expression in independent lineages of C4 grasses. John CR; Smith-Unna RD; Woodfield H; Covshoff S; Hibberd JM Plant Physiol; 2014 May; 165(1):62-75. PubMed ID: 24676859 [TBL] [Abstract][Full Text] [Related]
24. SCARECROW, SCR-LIKE 23 and SHORT-ROOT control bundle sheath cell fate and function in Arabidopsis thaliana. Cui H; Kong D; Liu X; Hao Y Plant J; 2014 Apr; 78(2):319-27. PubMed ID: 24517883 [TBL] [Abstract][Full Text] [Related]
25. Temperature response of bundle-sheath conductance in maize leaves. Yin X; van der Putten PE; Driever SM; Struik PC J Exp Bot; 2016 Apr; 67(9):2699-714. PubMed ID: 26969744 [TBL] [Abstract][Full Text] [Related]
26. The promoter of rbcS in a C3 plant (rice) directs organ-specific, light-dependent expression in a C4 plant (maize), but does not confer bundle sheath cell-specific expression. Nomura M; Katayama K; Nishimura A; Ishida Y; Ohta S; Komari T; Miyao-Tokutomi M; Tajima S; Matsuoka M Plant Mol Biol; 2000 Sep; 44(1):99-106. PubMed ID: 11094984 [TBL] [Abstract][Full Text] [Related]
27. Tangled1: a microtubule binding protein required for the spatial control of cytokinesis in maize. Smith LG; Gerttula SM; Han S; Levy J J Cell Biol; 2001 Jan; 152(1):231-6. PubMed ID: 11149933 [TBL] [Abstract][Full Text] [Related]
28. Multiplexed in situ hybridization reveals distinct lineage identities for major and minor vein initiation during maize leaf development. Perico C; Zaidem M; Sedelnikova O; Bhattacharya S; Korfhage C; Langdale JA Proc Natl Acad Sci U S A; 2024 Jul; 121(28):e2402514121. PubMed ID: 38959034 [TBL] [Abstract][Full Text] [Related]
29. Accelerated remodeling of the mesophyll-bundle sheath interface in the maize C4 cycle mutant leaves. Gao P; Wang P; Du B; Li P; Kang BH Sci Rep; 2022 Mar; 12(1):5057. PubMed ID: 35322159 [TBL] [Abstract][Full Text] [Related]
30. Fluorescence F 0 of photosystems II and I in developing C3 and C 4 leaves, and implications on regulation of excitation balance. Peterson RB; Oja V; Eichelmann H; Bichele I; Dall'Osto L; Laisk A Photosynth Res; 2014 Oct; 122(1):41-56. PubMed ID: 24817180 [TBL] [Abstract][Full Text] [Related]
31. Leaf permease1 gene of maize is required for chloroplast development. Schultes NP; Brutnell TP; Allen A; Dellaporta SL; Nelson T; Chen J Plant Cell; 1996 Mar; 8(3):463-75. PubMed ID: 8721750 [TBL] [Abstract][Full Text] [Related]
32. Evidence for phloem loading via the abaxial bundle sheath cells in maize leaves. Bezrutczyk M; Zöllner NR; Kruse CPS; Hartwig T; Lautwein T; Köhrer K; Frommer WB; Kim JY Plant Cell; 2021 May; 33(3):531-547. PubMed ID: 33955497 [TBL] [Abstract][Full Text] [Related]
33. Different pH-dependences of K+ channel activity in bundle sheath and mesophyll cells of maize leaves. Keunecke M; Hansen UP Planta; 2000 Apr; 210(5):792-800. PubMed ID: 10805451 [TBL] [Abstract][Full Text] [Related]
34. Structural and metabolic transitions of C4 leaf development and differentiation defined by microscopy and quantitative proteomics in maize. Majeran W; Friso G; Ponnala L; Connolly B; Huang M; Reidel E; Zhang C; Asakura Y; Bhuiyan NH; Sun Q; Turgeon R; van Wijk KJ Plant Cell; 2010 Nov; 22(11):3509-42. PubMed ID: 21081695 [TBL] [Abstract][Full Text] [Related]
35. Developmental dynamics of Kranz cell transcriptional specificity in maize leaf reveals early onset of C4-related processes. Tausta SL; Li P; Si Y; Gandotra N; Liu P; Sun Q; Brutnell TP; Nelson T J Exp Bot; 2014 Jul; 65(13):3543-55. PubMed ID: 24790109 [TBL] [Abstract][Full Text] [Related]
36. Cell differentiation in the longitudinal veins and formation of commissural veins in rice (Oryza sativa) and maize (Zea mays). Sakaguchi J; Fukuda H J Plant Res; 2008 Nov; 121(6):593-602. PubMed ID: 18932023 [TBL] [Abstract][Full Text] [Related]
37. The WIP6 transcription factor TOO MANY LATERALS specifies vein type in C Vlad D; Zaidem M; Perico C; Sedelnikova O; Bhattacharya S; Langdale JA Curr Biol; 2024 Apr; 34(8):1670-1686.e10. PubMed ID: 38531358 [TBL] [Abstract][Full Text] [Related]
38. The Rubisco Chaperone BSD2 May Regulate Chloroplast Coverage in Maize Bundle Sheath Cells. Salesse C; Sharwood R; Sakamoto W; Stern D Plant Physiol; 2017 Dec; 175(4):1624-1633. PubMed ID: 29089394 [TBL] [Abstract][Full Text] [Related]
39. Bundle sheath cells of small veins in maize leaves are the location of uptake from the xylem. Keunecke M; Lindner B; Seydel U; Schulz A; Hansen UP J Exp Bot; 2001 Apr; 52(357):709-14. PubMed ID: 11413207 [TBL] [Abstract][Full Text] [Related]
40. NARROW SHEATH1 functions from two meristematic foci during founder-cell recruitment in maize leaf development. Scanlon MJ Development; 2000 Nov; 127(21):4573-85. PubMed ID: 11023861 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]