These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 11526855)

  • 1. Phenomenological description of active transport of salt and water.
    Hoshiko T; Lindley BD
    J Gen Physiol; 1967 Jan; 50(3):729-58. PubMed ID: 11526855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The transport of salt and water across isolated rat ileum. Evidence for at least two distinct pathways.
    Clarkson TW
    J Gen Physiol; 1967 Jan; 50(3):695-727. PubMed ID: 11526854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the derivation of the Kargol's mechanistic transport equations from the Kedem-Katchalsky phenomenological equations.
    Suchanek G
    Gen Physiol Biophys; 2005 Jun; 24(2):247-58. PubMed ID: 16118476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. L version of the transformed Kedem-Katchalsky equations for membrane transport of electrolyte solutions and internal energy conversion.
    Ślęzak A; Grzegorczyn SM
    Polim Med; 2024; 54(1):45-57. PubMed ID: 38315071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cotransport of salt and water in membrane proteins: membrane proteins as osmotic engines.
    Zeuthen T; Stein WD
    J Membr Biol; 1994 Feb; 137(3):179-95. PubMed ID: 8182729
    [No Abstract]   [Full Text] [Related]  

  • 6. Generalization of the Spiegler-Kedem-Katchalsky frictional model equations of the transmembrane transport for multicomponent non-electrolyte solutions.
    Slezak A; Turczyński B
    Biophys Chem; 1992 Oct; 44(3):139-42. PubMed ID: 1420944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The use of linear nonequilibrium thermodynamics in the study of renal physiology.
    Essig A; Caplan SR
    Am J Physiol; 1979 Mar; 236(3):F211-9. PubMed ID: 371416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. P2X receptors: epithelial ion channels and regulators of salt and water transport.
    Wildman SS; King BF
    Nephron Physiol; 2008; 108(3):p60-7. PubMed ID: 18376132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The relation between salt and ionic transport coefficients.
    Kedem O; Leaf A
    J Gen Physiol; 1966 Mar; 49(4):655-62. PubMed ID: 5943607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sodium chloride reflection coefficient in rabbit gall bladder.
    Monticelli G; Celentano F; Torelli G
    Biochim Biophys Acta; 1975 Aug; 401(1):41-50. PubMed ID: 1148289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A thermodynamic analysis of fluxes and flux-ratios in bioligical membranes.
    Coster HG; George EP
    Biophys J; 1968 Apr; 8(4):457-69. PubMed ID: 5643275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurements and modeling of water transport and osmoregulation in a single kidney cell using optical tweezers and videomicroscopy.
    Lúcio AD; Santos RA; Mesquita ON
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Oct; 68(4 Pt 1):041906. PubMed ID: 14682972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Ionic, electrical and water balance in the animal cell. The system with active cation transport, Goldman's channels and the Na + K +2Cl-type symport].
    Vereninov AA; Vereninov AA
    Tsitologiia; 1991; 33(11):4-17. PubMed ID: 1726375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling nanofiltration of electrolyte solutions.
    Yaroshchuk A; Bruening ML; Zholkovskiy E
    Adv Colloid Interface Sci; 2019 Jun; 268():39-63. PubMed ID: 30951927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane permeability modeling: Kedem-Katchalsky vs a two-parameter formalism.
    Kleinhans FW
    Cryobiology; 1998 Dec; 37(4):271-89. PubMed ID: 9917344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Frontiers in biotransport: water transport and hydration.
    Aksan A; Hubel A; Bischof JC
    J Biomech Eng; 2009 Jul; 131(7):074004. PubMed ID: 19640136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [New method of derivation of practical Kedem-Katchalsky membrane transport equations].
    Jarzyńska M
    Polim Med; 2005; 35(4):19-24. PubMed ID: 16619794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The
    Batko KM; Ślęzak A; Grzegorczyn S; Bajdur WM
    Entropy (Basel); 2020 Aug; 22(8):. PubMed ID: 33286628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the components of ionic flux across a membrane.
    Shapiro MP; Candia OA
    Biophys J; 1971 Jan; 11(1):28-46. PubMed ID: 5538999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A development of the generalized Spiegler-Kedem-Katchalsky model equations for interactions of hydrated species in transport through polymeric membranes.
    Slezak A; Grzegorczyn S
    Polim Med; 2006; 36(4):43-51. PubMed ID: 17402232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.