These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 11527037)

  • 1. Three-dimensional spiraling finite element model of the electrically stimulated cochlea.
    Hanekom T
    Ear Hear; 2001 Aug; 22(4):300-15. PubMed ID: 11527037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling encapsulation tissue around cochlear implant electrodes.
    Hanekom T
    Med Biol Eng Comput; 2005 Jan; 43(1):47-55. PubMed ID: 15742719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrical stimulation of the auditory nerve: the effect of electrode position on neural excitation.
    Shepherd RK; Hatsushika S; Clark GM
    Hear Res; 1993 Mar; 66(1):108-20. PubMed ID: 8473242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial selectivity in a rotationally symmetric model of the electrically stimulated cochlea.
    Frijns JH; de Snoo SL; ten Kate JH
    Hear Res; 1996 May; 95(1-2):33-48. PubMed ID: 8793506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stimulation of the facial nerve by intracochlear electrodes in otosclerosis: a computer modeling study.
    Frijns JH; Kalkman RK; Briaire JJ
    Otol Neurotol; 2009 Dec; 30(8):1168-74. PubMed ID: 19574948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of stimulus and recording parameters on spatial spread of excitation and masking patterns obtained with the electrically evoked compound action potential in cochlear implants.
    Hughes ML; Stille LJ
    Ear Hear; 2010 Oct; 31(5):679-92. PubMed ID: 20505513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Auditory nerve fiber excitability for alternative electrode placement in the obstructed human cochlea: electrode insertion in scala vestibuli versus scala tympani.
    Fellner A; Wenger C; Heshmat A; Rattay F
    J Neural Eng; 2024 Aug; 21(4):. PubMed ID: 39029505
    [No Abstract]   [Full Text] [Related]  

  • 8. Potential distributions and neural excitation patterns in a rotationally symmetric model of the electrically stimulated cochlea.
    Frijns JH; de Snoo SL; Schoonhoven R
    Hear Res; 1995 Jul; 87(1-2):170-86. PubMed ID: 8567435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single fiber mapping of spatial excitation patterns in the electrically stimulated auditory nerve.
    van den Honert C; Stypulkowski PH
    Hear Res; 1987; 29(2-3):195-206. PubMed ID: 3624083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chronic electrical stimulation of the auditory nerve at high stimulus rates: a physiological and histopathological study.
    Xu J; Shepherd RK; Millard RE; Clark GM
    Hear Res; 1997 Mar; 105(1-2):1-29. PubMed ID: 9083801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Topographic spread of inferior colliculus activation in response to acoustic and intracochlear electric stimulation.
    Snyder RL; Bierer JA; Middlebrooks JC
    J Assoc Res Otolaryngol; 2004 Sep; 5(3):305-22. PubMed ID: 15492888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Place pitch versus electrode location in a realistic computational model of the implanted human cochlea.
    Kalkman RK; Briaire JJ; Dekker DM; Frijns JH
    Hear Res; 2014 Sep; 315():10-24. PubMed ID: 24975087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cochlear implant electrode configuration effects on activation threshold and tonotopic selectivity.
    Snyder RL; Middlebrooks JC; Bonham BH
    Hear Res; 2008 Jan; 235(1-2):23-38. PubMed ID: 18037252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrode interaction in cochlear implant recipients: comparison of straight and contour electrode arrays.
    Xi X; Ji F; Han D; Hong M; Chen A
    ORL J Otorhinolaryngol Relat Spec; 2009; 71(4):228-37. PubMed ID: 19707042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of an electrode for the artificial cochlear sensory epithelium.
    Tona Y; Inaoka T; Ito J; Kawano S; Nakagawa T
    Hear Res; 2015 Dec; 330(Pt A):106-12. PubMed ID: 26299844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Auditory cortical images of cochlear-implant stimuli: coding of stimulus channel and current level.
    Middlebrooks JC; Bierer JA
    J Neurophysiol; 2002 Jan; 87(1):493-507. PubMed ID: 11784765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Threshold, comfortable level and impedance changes as a function of electrode-modiolar distance.
    Saunders E; Cohen L; Aschendorff A; Shapiro W; Knight M; Stecker M; Richter B; Waltzman S; Tykocinski M; Roland T; Laszig R; Cowan R
    Ear Hear; 2002 Feb; 23(1 Suppl):28S-40S. PubMed ID: 11883764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of electrode position on spatiotemporal auditory nerve fiber responses: a 3D computational model study.
    Kang S; Chwodhury T; Moon IJ; Hong SH; Yang H; Won JH; Woo J
    Comput Math Methods Med; 2015; 2015():934382. PubMed ID: 25755675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A model of the electrically excited human cochlear neuron. II. Influence of the three-dimensional cochlear structure on neural excitability.
    Rattay F; Leao RN; Felix H
    Hear Res; 2001 Mar; 153(1-2):64-79. PubMed ID: 11223297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrode configuration influences action potential initiation site and ensemble stochastic response properties.
    Miller CA; Abbas PJ; Nourski KV; Hu N; Robinson BK
    Hear Res; 2003 Jan; 175(1-2):200-14. PubMed ID: 12527139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.