These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 11527576)
1. A model of oxidative phosphorylation in mammalian skeletal muscle. Korzeniewski B; Zoladz JA Biophys Chem; 2001 Aug; 92(1-2):17-34. PubMed ID: 11527576 [TBL] [Abstract][Full Text] [Related]
2. Influence of rapid changes in cytosolic pH on oxidative phosphorylation in skeletal muscle: theoretical studies. Korzeniewski B; Zoladz JA Biochem J; 2002 Jul; 365(Pt 1):249-58. PubMed ID: 12132435 [TBL] [Abstract][Full Text] [Related]
3. Factors determining the oxygen consumption rate (VO2) on-kinetics in skeletal muscles. Korzeniewski B; Zoladz JA Biochem J; 2004 May; 379(Pt 3):703-10. PubMed ID: 14744260 [TBL] [Abstract][Full Text] [Related]
4. Possible mechanisms underlying slow component of V̇O2 on-kinetics in skeletal muscle. Korzeniewski B; Zoladz JA J Appl Physiol (1985); 2015 May; 118(10):1240-9. PubMed ID: 25767031 [TBL] [Abstract][Full Text] [Related]
5. Theoretical modelling of some spatial and temporal aspects of the mitochondrion/creatine kinase/myofibril system in muscle. Kemp GJ; Manners DN; Clark JF; Bastin ME; Radda GK Mol Cell Biochem; 1998 Jul; 184(1-2):249-89. PubMed ID: 9746325 [TBL] [Abstract][Full Text] [Related]
6. Regulation of oxidative phosphorylation in different muscles and various experimental conditions. Korzeniewski B Biochem J; 2003 Nov; 375(Pt 3):799-804. PubMed ID: 12901719 [TBL] [Abstract][Full Text] [Related]
7. Regulation of metabolism: the work-to-rest transition in skeletal muscle. Wilson DF Am J Physiol Endocrinol Metab; 2016 Apr; 310(8):E633-E642. PubMed ID: 26837809 [TBL] [Abstract][Full Text] [Related]
8. Each-step activation of oxidative phosphorylation is necessary to explain muscle metabolic kinetic responses to exercise and recovery in humans. Korzeniewski B; Rossiter HB J Physiol; 2015 Dec; 593(24):5255-68. PubMed ID: 26503399 [TBL] [Abstract][Full Text] [Related]
9. Adenine nucleotide-creatine-phosphate module in myocardial metabolic system explains fast phase of dynamic regulation of oxidative phosphorylation. van Beek JH Am J Physiol Cell Physiol; 2007 Sep; 293(3):C815-29. PubMed ID: 17581855 [TBL] [Abstract][Full Text] [Related]
10. Regulation of ATP supply during muscle contraction: theoretical studies. Korzeniewski B Biochem J; 1998 Mar; 330 ( Pt 3)(Pt 3):1189-95. PubMed ID: 9494084 [TBL] [Abstract][Full Text] [Related]
11. Developmental changes in regulation of mitochondrial respiration by ADP and creatine in rat heart in vivo. Tiivel T; Kadaya L; Kuznetsov A; Käämbre T; Peet N; Sikk P; Braun U; Ventura-Clapier R; Saks V; Seppet EK Mol Cell Biochem; 2000 May; 208(1-2):119-28. PubMed ID: 10939635 [TBL] [Abstract][Full Text] [Related]
12. Faster and stronger manifestation of mitochondrial diseases in skeletal muscle than in heart related to cytosolic inorganic phosphate (Pi) accumulation. Korzeniewski B J Appl Physiol (1985); 2016 Aug; 121(2):424-37. PubMed ID: 27283913 [TBL] [Abstract][Full Text] [Related]
13. Regulation of oxidative phosphorylation in intact mammalian heart in vivo. Korzeniewski B; Noma A; Matsuoka S Biophys Chem; 2005 Jul; 116(2):145-57. PubMed ID: 15950827 [TBL] [Abstract][Full Text] [Related]
14. Phosphocreatine synthesis by isolated rat skeletal muscle mitochondria is not dependent upon external ADP: a 31P NMR study. Kernec F; Le Tallec N; Nadal L; Bégué JM; Le Rumeur E Biochem Biophys Res Commun; 1996 Aug; 225(3):819-25. PubMed ID: 8780696 [TBL] [Abstract][Full Text] [Related]
15. Regulation of oxidative phosphorylation during work transitions results from its kinetic properties. Korzeniewski B J Appl Physiol (1985); 2014 Jan; 116(1):83-94. PubMed ID: 24157529 [TBL] [Abstract][Full Text] [Related]
16. Theoretical studies on the regulation of anaerobic glycolysis and its influence on oxidative phosphorylation in skeletal muscle. Korzeniewski B; Liguzinski P Biophys Chem; 2004 Jul; 110(1-2):147-69. PubMed ID: 15223151 [TBL] [Abstract][Full Text] [Related]
17. Factors determining the relative contribution of the adenine-nucleotide translocator and the ADP-regenerating system to the control of oxidative phosphorylation in isolated rat-liver mitochondria. Wanders RJ; Groen AK; Van Roermund CW; Tager JM Eur J Biochem; 1984 Jul; 142(2):417-24. PubMed ID: 6086353 [TBL] [Abstract][Full Text] [Related]
18. Mitochondrial creatine kinase isoform expression does not correlate with its mode of action. Anflous K; Veksler V; Mateo P; Samson F; Saks V; Ventura-Clapier R Biochem J; 1997 Feb; 322 ( Pt 1)(Pt 1):73-8. PubMed ID: 9078245 [TBL] [Abstract][Full Text] [Related]
19. The modeling of oxidative phosphorylation in skeletal muscle. Korzeniewski B Jpn J Physiol; 2004 Dec; 54(6):511-6. PubMed ID: 15760482 [TBL] [Abstract][Full Text] [Related]
20. Role of the creatine/phosphocreatine system in the regulation of mitochondrial respiration. Saks VA; Kongas O; Vendelin M; Kay L Acta Physiol Scand; 2000 Apr; 168(4):635-41. PubMed ID: 10759600 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]