BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 11528209)

  • 1. Intrarenal distribution of blood flow in sodium depleted and sodium loaded rats: role of nitric oxide.
    Hably C; Vág J; Tost H; Csabai Z; Bartha J
    Kidney Blood Press Res; 2001; 24(3):166-75. PubMed ID: 11528209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of ATP on rat renal haemodynamics and excretion: role of sodium intake, nitric oxide and cytochrome P450.
    Dobrowolski L; Walkowska A; Kompanowska-Jezierska E; Kuczeriszka M; Sadowski J
    Acta Physiol (Oxf); 2007 Jan; 189(1):77-85. PubMed ID: 17280559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of NO and COX pathways in mediation of adenosine A1 receptor-induced renal vasoconstriction.
    Walkowska A; Dobrowolski L; Kompanowska-Jezierska E; Sadowski J
    Exp Biol Med (Maywood); 2007 May; 232(5):690-4. PubMed ID: 17463166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of chronic renal medullary nitric oxide inhibition on blood pressure.
    Mattson DL; Lu S; Nakanishi K; Papanek PE; Cowley AW
    Am J Physiol; 1994 May; 266(5 Pt 2):H1918-26. PubMed ID: 8203591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of arterial blood pressure and renal sodium excretion by nitric oxide synthase in the renal medulla.
    Mattson DL; Wu F
    Acta Physiol Scand; 2000 Jan; 168(1):149-54. PubMed ID: 10691793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of renal medullary blood flow in the development of L-NAME hypertension in rats.
    Nakanishi K; Mattson DL; Cowley AW
    Am J Physiol; 1995 Feb; 268(2 Pt 2):R317-23. PubMed ID: 7864223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suprarenal aortic clamping and reperfusion decreases medullary and cortical blood flow by decreased endogenous renal nitric oxide and PGE2 synthesis.
    Myers SI; Wang L; Liu F; Bartula LL
    J Vasc Surg; 2005 Sep; 42(3):524-31. PubMed ID: 16171601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitric oxide and renal nerves: comparison of effects on renal circulation and sodium excretion in anesthetized rats.
    Walkowska A; Kompanowska-Jezierska E; Sadowski J
    Kidney Int; 2004 Aug; 66(2):705-12. PubMed ID: 15253725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxygen-radical regulation of renal blood flow following suprarenal aortic clamping.
    Myers SI; Wang L; Liu F; Bartula LL
    J Vasc Surg; 2006 Mar; 43(3):577-86. PubMed ID: 16520177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of intrarenal blood flow in experimental heart failure: role of endothelin and nitric oxide.
    Abassi Z; Gurbanov K; Rubinstein I; Better OS; Hoffman A; Winaver J
    Am J Physiol; 1998 Apr; 274(4):F766-74. PubMed ID: 9575902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iodinated contrast induced renal vasoconstriction is due in part to the downregulation of renal cortical and medullary nitric oxide synthesis.
    Myers SI; Wang L; Liu F; Bartula LL
    J Vasc Surg; 2006 Aug; 44(2):383-91. PubMed ID: 16890873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Renal tissue NO and intrarenal haemodynamics during experimental variations of NO content in anaesthetised rats.
    Grzelec-Mojzesowicz M; Sadowski J
    J Physiol Pharmacol; 2007 Mar; 58(1):149-63. PubMed ID: 17440233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptation to increased dietary salt intake in the rat. Role of endogenous nitric oxide.
    Shultz PJ; Tolins JP
    J Clin Invest; 1993 Feb; 91(2):642-50. PubMed ID: 7679414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cardiac output distribution and intrarenal haemodynamics: role of thromboxanes.
    Hably C; Menz V; Bartha J
    Acta Physiol Hung; 1991; 78(1):89-98. PubMed ID: 1763653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellular transport of l-arginine determines renal medullary blood flow in control rats, but not in diabetic rats despite enhanced cellular uptake capacity.
    Persson P; Fasching A; Teerlink T; Hansell P; Palm F
    Am J Physiol Renal Physiol; 2017 Feb; 312(2):F278-F283. PubMed ID: 27927650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of renal nerve stimulation on intrarenal blood flow in rats with intact or inactivated NO synthases.
    Walkowska A; Badzyńska B; Kompanowska-Jezierska E; Johns EJ; Sadowski J
    Acta Physiol Scand; 2005 Jan; 183(1):99-105. PubMed ID: 15654923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Platelet-activating factor and solute transport processes in the kidney.
    Handa RK; Strandhoy JW; Giammattei CE; Handa SE
    Am J Physiol Renal Physiol; 2003 Feb; 284(2):F274-81. PubMed ID: 12529272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of daily sodium intake and ANG II on cortical and medullary renal blood flow in conscious rats.
    Gross V; Kurth TM; Skelton MM; Mattson DL; Cowley AW
    Am J Physiol; 1998 May; 274(5):R1317-23. PubMed ID: 9644045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Salt-sensitive hypertension in conscious rats induced by chronic nitric oxide blockade.
    Nakanishi K; Hara N; Nagai Y
    Am J Hypertens; 2002 Feb; 15(2 Pt 1):150-6. PubMed ID: 11863250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Renal hemodynamic interactions of nitric oxide and angiotensin II].
    Nakanishi K; Hamada K; Hara N; Nagai Y; Nakamura K
    Nihon Jinzo Gakkai Shi; 1998 Nov; 40(8):567-72. PubMed ID: 9893455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.