BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 11528415)

  • 1. Opposing actions of protein kinase A and C mediate Hebbian synaptic plasticity.
    Li MX; Jia M; Jiang H; Dunlap V; Nelson PG
    Nat Neurosci; 2001 Sep; 4(9):871-2. PubMed ID: 11528415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pre- and postsynaptic mechanisms in Hebbian activity-dependent synapse modification.
    Li MX; Jia M; Yang LX; Dunlap V; Nelson PG
    J Neurobiol; 2002 Sep; 52(3):241-50. PubMed ID: 12210107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synapse elimination from the mouse neuromuscular junction in vitro: a non-Hebbian activity-dependent process.
    Nelson PG; Fields RD; Yu C; Liu Y
    J Neurobiol; 1993 Nov; 24(11):1517-30. PubMed ID: 8283186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorylation of the nicotinic acetylcholine receptor in myotube-cholinergic neuron cocultures.
    Lanuza MA; Gizaw R; Viloria A; González CM; Besalduch N; Dunlap V; Tomàs J; Nelson PG
    J Neurosci Res; 2006 Jun; 83(8):1407-14. PubMed ID: 16555299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Serotonin receptor antagonists discriminate between PKA- and PKC-mediated plasticity in aplysia sensory neurons.
    Dumitriu B; Cohen JE; Wan Q; Negroiu AM; Abrams TW
    J Neurophysiol; 2006 Apr; 95(4):2713-20. PubMed ID: 16236785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The thrombin receptor mediates functional activity-dependent neuromuscular synapse reduction via protein kinase C activation in vitro.
    Jia M; Li M; Dunlap V; Nelson PG
    J Neurobiol; 1999 Feb; 38(3):369-81. PubMed ID: 10022579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of hippocampal synaptic plasticity by cyclic AMP-dependent protein kinases.
    Nguyen PV; Woo NH
    Prog Neurobiol; 2003 Dec; 71(6):401-37. PubMed ID: 15013227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Muscarinic receptor dependent long-term depression in rat visual cortex is PKC independent but requires ERK1/2 activation and protein synthesis.
    McCoy PA; McMahon LL
    J Neurophysiol; 2007 Oct; 98(4):1862-70. PubMed ID: 17634336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Roles of CaMKII, PKA, and PKC in the induction and maintenance of LTP of C-fiber-evoked field potentials in rat spinal dorsal horn.
    Yang HW; Hu XD; Zhang HM; Xin WJ; Li MT; Zhang T; Zhou LJ; Liu XG
    J Neurophysiol; 2004 Mar; 91(3):1122-33. PubMed ID: 14586032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential regulation of synaptic transmission by adrenergic agonists via protein kinase A and protein kinase C in layer V pyramidal neurons of rat cerebral cortex.
    Kobayashi M
    Neuroscience; 2007 Jun; 146(4):1772-84. PubMed ID: 17478051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-lasting synapse formation in cultured rat hippocampal neurons after repeated PKA activation.
    Yamamoto M; Urakubo T; Tominaga-Yoshino K; Ogura A
    Brain Res; 2005 Apr; 1042(1):6-16. PubMed ID: 15823247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PKA and PKC enhance excitatory synaptic transmission in human dentate gyrus.
    Chen HX; Roper SN
    J Neurophysiol; 2003 May; 89(5):2482-8. PubMed ID: 12611980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Orchestration of synaptic plasticity through AKAP signaling complexes.
    Bauman AL; Goehring AS; Scott JD
    Neuropharmacology; 2004 Mar; 46(3):299-310. PubMed ID: 14975685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro formation and activity-dependent plasticity of synapses between Helix neurons involved in the neural control of feeding and withdrawal behaviors.
    Fiumara F; Leitinger G; Milanese C; Montarolo PG; Ghirardi M
    Neuroscience; 2005; 134(4):1133-51. PubMed ID: 16054762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insulin modulates hippocampal activity-dependent synaptic plasticity in a N-methyl-d-aspartate receptor and phosphatidyl-inositol-3-kinase-dependent manner.
    van der Heide LP; Kamal A; Artola A; Gispen WH; Ramakers GM
    J Neurochem; 2005 Aug; 94(4):1158-66. PubMed ID: 16092951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Possible involvement of BDNF release in long-lasting synapse formation induced by repetitive PKA activation.
    Taniguchi N; Shinoda Y; Takei N; Nawa H; Ogura A; Tominaga-Yoshino K
    Neurosci Lett; 2006 Oct; 406(1-2):38-42. PubMed ID: 16904263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GABA(B) receptor activation mediates frequency-dependent plasticity of developing GABAergic synapses.
    Xu C; Zhao MX; Poo MM; Zhang XH
    Nat Neurosci; 2008 Dec; 11(12):1410-8. PubMed ID: 18953347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An analysis of synaptic normalization in a general class of Hebbian models.
    Elliott T
    Neural Comput; 2003 Apr; 15(4):937-63. PubMed ID: 12689393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Synaptic tagging and memory trace].
    López-Rojas J; Almaguer-Melián W; Bergado-Rosado JA
    Rev Neurol; 2007 Nov 16-30; 45(10):607-14. PubMed ID: 18008267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amygdala stimulation modulates hippocampal synaptic plasticity.
    Nakao K; Matsuyama K; Matsuki N; Ikegaya Y
    Proc Natl Acad Sci U S A; 2004 Sep; 101(39):14270-5. PubMed ID: 15381775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.