BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 11530009)

  • 1. Galactosyl transfer catalyzed by thermostable beta-glycosidases from Sulfolobus solfataricus and Pyrococcus furiosus: kinetic studies of the reactions of galactosylated enzyme intermediates with a range of nucleophiles.
    Petzelbauer I; Splechtna B; Nidetzky B
    J Biochem; 2001 Sep; 130(3):341-9. PubMed ID: 11530009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transgalactosylation by thermostable beta-glycosidases from Pyrococcus furiosus and Sulfolobus solfataricus. Binding interactions of nucleophiles with the galactosylated enzyme intermediate make major contributions to the formation of new beta-glycosides during lactose conversion.
    Petzelbauer I; Reiter A; Splechtna B; Kosma P; Nidetzky B
    Eur J Biochem; 2000 Aug; 267(16):5055-66. PubMed ID: 10931188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-reactivity relationships for beta-galactosidase (Escherichia coli, lac Z). 4. Mechanism for reaction of nucleophiles with the galactosyl-enzyme intermediates of E461G and E461Q beta-galactosidases.
    Richard JP; Huber RE; Heo C; Amyes TL; Lin S
    Biochemistry; 1996 Sep; 35(38):12387-401. PubMed ID: 8823174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-reactivity relationships for beta-galactosidase (Escherichia coli, lac Z). 2. Reactions of the galactosyl-enzyme intermediate with alcohols and azide ion.
    Richard JP; Westerfeld JG; Lin S; Beard J
    Biochemistry; 1995 Sep; 34(37):11713-24. PubMed ID: 7547903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of an ultra-high-temperature process for the enzymatic hydrolysis of lactose. I. The properties of two thermostable beta-glycosidases.
    Petzelbauer I; Nidetzky B; Haltrich D; Kulbe KD
    Biotechnol Bioeng; 1999 Aug; 64(3):322-32. PubMed ID: 10397869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of an ultrahigh-temperature process for the enzymatic hydrolysis of lactose. IV. Immobilization of two thermostable beta-glycosidases and optimization of a packed-bed reactor for lactose conversion.
    Petzelbauer I; Kuhn B; Splechtna B; Kulbe KD; Nidetzky B
    Biotechnol Bioeng; 2002 Mar; 77(6):619-31. PubMed ID: 11807757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of an ultra-high-temperature process for the enzymatic hydrolysis of lactose: II. Oligosaccharide formation by two thermostable beta-glycosidases.
    Petzelbauer I; Zeleny R; Reiter A; Kulbe KD; Nidetzky B
    Biotechnol Bioeng; 2000 Jul; 69(2):140-9. PubMed ID: 10861393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-reactivity relationships for beta-galactosidase (Escherichia coli, lac Z). 3. Evidence that Glu-461 participates in Brønsted acid-base catalysis of beta-D-galactopyranosyl group transfer.
    Richard JP; Huber RE; Lin S; Heo C; Amyes TL
    Biochemistry; 1996 Sep; 35(38):12377-86. PubMed ID: 8823173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of an ultrahigh-temperature process for the enzymatic hydrolysis of lactose. III. Utilization of two thermostable beta-glycosidases in a continuous ultrafiltration membrane reactor and galacto-oligosaccharide formation under steady-state conditions.
    Petzelbauer I; Splechtna B; Nidetzky B
    Biotechnol Bioeng; 2002 Feb; 77(4):394-404. PubMed ID: 11787012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of ionic liquid cosolvent on transgalactosylation reactions catalyzed by thermostable beta-glycosylhydrolase CelB from Pyrococcus Furiosus.
    Lang M; Kamrat T; Nidetzky B
    Biotechnol Bioeng; 2006 Dec; 95(6):1093-100. PubMed ID: 16850501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving low-temperature catalysis in the hyperthermostable Pyrococcus furiosus beta-glucosidase CelB by directed evolution.
    Lebbink JH; Kaper T; Bron P; van der Oost J; de Vos WM
    Biochemistry; 2000 Apr; 39(13):3656-65. PubMed ID: 10736164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activity and stability of hyperthermophilic enzymes: a comparative study on two archaeal beta-glycosidases.
    Pouwels J; Moracci M; Cobucci-Ponzano B; Perugino G; van der Oost J; Kaper T; Lebbink JH; de Vos WM; Ciaramella M; Rossi M
    Extremophiles; 2000 Jun; 4(3):157-64. PubMed ID: 10879560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparative infrared spectroscopic study of glycoside hydrolases from extremophilic archaea revealed different molecular mechanisms of adaptation to high temperatures.
    Ausili A; Cobucci-Ponzano B; Di Lauro B; D'Avino R; Perugino G; Bertoli E; Scirè A; Rossi M; Tanfani F; Moracci M
    Proteins; 2007 Jun; 67(4):991-1001. PubMed ID: 17357157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of an extremely thermostable but cold-adaptive β-galactosidase from the hyperthermophilic archaeon Pyrococcus furiosus for use as a recombinant aggregation for batch lactose degradation at high temperature.
    Dong Q; Yan X; Zheng M; Yang Z
    J Biosci Bioeng; 2014 Jun; 117(6):706-10. PubMed ID: 24462527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ground-state, transition-state, and metal-cation effects of the 2-hydroxyl group on beta-D-galactopyranosyl transfer catalyzed by beta-galactosidase (Escherichia coli, lac Z).
    Richard JP; McCall DA; Heo CK; Toteva MM
    Biochemistry; 2005 Sep; 44(35):11872-81. PubMed ID: 16128589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved oligosaccharide synthesis by protein engineering of beta-glucosidase CelB from hyperthermophilic Pyrococcus furiosus.
    Hansson T; Kaper T; van Der Oost J; de Vos WM; Adlercreutz P
    Biotechnol Bioeng; 2001 May; 73(3):203-10. PubMed ID: 11257602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative structural analysis and substrate specificity engineering of the hyperthermostable beta-glucosidase CelB from Pyrococcus furiosus.
    Kaper T; Lebbink JH; Pouwels J; Kopp J; Schulz GE; van der Oost J; de Vos WM
    Biochemistry; 2000 May; 39(17):4963-70. PubMed ID: 10819960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced transglucosylation/hydrolysis ratio of mutants of Pyrococcus furiosus beta-glucosidase: effects of donor concentration, water content, and temperature on activity and selectivity in hexanol.
    Hansson T; Adlercreutz P
    Biotechnol Bioeng; 2001 Dec; 75(6):656-65. PubMed ID: 11745143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the bga1-encoded glycoside hydrolase family 35 beta-galactosidase of Hypocrea jecorina with galacto-beta-D-galactanase activity.
    Gamauf C; Marchetti M; Kallio J; Puranen T; Vehmaanperä J; Allmaier G; Kubicek CP; Seiboth B
    FEBS J; 2007 Apr; 274(7):1691-700. PubMed ID: 17381511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA family shuffling of hyperthermostable beta-glycosidases.
    Kaper T; Brouns SJ; Geerling AC; De Vos WM; Van der Oost J
    Biochem J; 2002 Dec; 368(Pt 2):461-70. PubMed ID: 12164784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.