BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 11530054)

  • 21. Cone and rod dysfunction in fundus albipunctatus with RDH5 mutation: an electrophysiological study.
    Niwa Y; Kondo M; Ueno S; Nakamura M; Terasaki H; Miyake Y
    Invest Ophthalmol Vis Sci; 2005 Apr; 46(4):1480-5. PubMed ID: 15790919
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Disease sequence from mutant rhodopsin allele to rod and cone photoreceptor degeneration in man.
    Cideciyan AV; Hood DC; Huang Y; Banin E; Li ZY; Stone EM; Milam AH; Jacobson SG
    Proc Natl Acad Sci U S A; 1998 Jun; 95(12):7103-8. PubMed ID: 9618546
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Topography of cone electrophysiology in the enhanced S cone syndrome.
    Marmor MF; Tan F; Sutter EE; Bearse MA
    Invest Ophthalmol Vis Sci; 1999 Jul; 40(8):1866-73. PubMed ID: 10393063
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Differential diagnosis of cone dystrophies].
    Sadowski B; Zrenner E
    Ophthalmologe; 1994 Dec; 91(6):719-29. PubMed ID: 7849422
    [TBL] [Abstract][Full Text] [Related]  

  • 25. N-Methyl-N-Nitrosourea-Induced Acute Alteration of Retinal Function and Morphology in Monkeys.
    Kinoshita J; Iwata N; Maejima T; Imaoka M; Kimotsuki T; Yasuda M
    Invest Ophthalmol Vis Sci; 2015 Nov; 56(12):7146-58. PubMed ID: 26529049
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Two-color pupillometry in enhanced S-cone syndrome caused by NR2E3 mutations.
    Collison FT; Park JC; Fishman GA; Stone EM; McAnany JJ
    Doc Ophthalmol; 2016 Jun; 132(3):157-66. PubMed ID: 27033713
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rod-driven focal macular electroretinogram.
    Choshi T; Matsumoto CS; Nakatsuka K
    Jpn J Ophthalmol; 2003; 47(4):356-61. PubMed ID: 12842203
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regressive and reactive changes in the connectivity patterns of rod and cone pathways of P23H transgenic rat retina.
    Cuenca N; Pinilla I; Sauvé Y; Lu B; Wang S; Lund RD
    Neuroscience; 2004; 127(2):301-17. PubMed ID: 15262321
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Local cone and rod system function in progressive cone dystrophy.
    Holopigian K; Seiple W; Greenstein VC; Hood DC; Carr RE
    Invest Ophthalmol Vis Sci; 2002 Jul; 43(7):2364-73. PubMed ID: 12091439
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cone loss is delayed relative to rod loss during induced retinal degeneration in the diurnal cone-rich rodent Arvicanthis ansorgei.
    Boudard DL; Tanimoto N; Huber G; Beck SC; Seeliger MW; Hicks D
    Neuroscience; 2010 Sep; 169(4):1815-30. PubMed ID: 20600653
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Progressive cone dystrophy with deutan genotype and phenotype.
    Scholl HP; Kremers J; Besch D; Zrenner E; Jägle H
    Graefes Arch Clin Exp Ophthalmol; 2006 Feb; 244(2):183-91. PubMed ID: 16082559
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evidence for photoreceptor changes in patients with diabetic retinopathy.
    Holopigian K; Greenstein VC; Seiple W; Hood DC; Carr RE
    Invest Ophthalmol Vis Sci; 1997 Oct; 38(11):2355-65. PubMed ID: 9344359
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Attenuation of oscillatory potentials in nob2 mice.
    Yu M; Peachey NS
    Doc Ophthalmol; 2007 Nov; 115(3):173-86. PubMed ID: 17479213
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electroretinographic findings in the Standard Wire Haired Dachshund with inherited early onset cone-rod dystrophy.
    Ropstad EO; Bjerkås E; Narfström K
    Doc Ophthalmol; 2007 Jan; 114(1):27-36. PubMed ID: 17180612
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 'Unilateral cone dystrophy': ERG changes implicate abnormal signaling by hyperpolarizing bipolar and/or horizontal cells.
    Sieving PA
    Trans Am Ophthalmol Soc; 1994; 92():459-71; discussion 471-4. PubMed ID: 7886877
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Using Silent Substitution to Track the Mesopic Transition From Rod- to Cone-Based Vision in Mice.
    Allen AE; Lucas RJ
    Invest Ophthalmol Vis Sci; 2016 Jan; 57(1):276-87. PubMed ID: 26818794
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Delays in rod-mediated dark adaptation in early age-related maculopathy.
    Owsley C; Jackson GR; White M; Feist R; Edwards D
    Ophthalmology; 2001 Jul; 108(7):1196-202. PubMed ID: 11425675
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prolonged rod dark adaptation in patients with cone-rod dystrophy.
    Fishman GA; Pulluru P; Alexander KR; Derlacki DJ; Gilbert LD
    Am J Ophthalmol; 1994 Sep; 118(3):362-7. PubMed ID: 8085594
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biphasic photoreceptor degeneration induced by light in a T17M rhodopsin mouse model of cone bystander damage.
    Krebs MP; White DA; Kaushal S
    Invest Ophthalmol Vis Sci; 2009 Jun; 50(6):2956-65. PubMed ID: 19136713
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fundus flavimaculatus with severely reduced cone electroretinogram.
    Iijima H; Gohdo T; Hosaka O
    Jpn J Ophthalmol; 1992; 36(3):249-56. PubMed ID: 1464966
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.