BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

57 related articles for article (PubMed ID: 11530102)

  • 1. Mitochondrial K(ATP) channel opening protects a human atrial-derived cell line by a mechanism involving free radical generation.
    Carroll R; Gant VA; Yellon DM
    Cardiovasc Res; 2001 Sep; 51(4):691-700. PubMed ID: 11530102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial K+ channels are involved in ischemic postconditioning in rat hearts.
    Jin C; Wu J; Watanabe M; Okada T; Iesaki T
    J Physiol Sci; 2012 Jul; 62(4):325-32. PubMed ID: 22528048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. K(ATP) channels and MPTP are involved in the cardioprotection bestowed by chronic intermittent hypobaric hypoxia in the developing rat.
    Bu HM; Yang CY; Wang ML; Ma HJ; Sun H; Zhang Y
    J Physiol Sci; 2015 Jul; 65(4):367-76. PubMed ID: 25862574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pharmacological preconditioning by diazoxide downregulates cardiac L-type Ca(2+) channels.
    González G; Zaldívar D; Carrillo E; Hernández A; García M; Sánchez J
    Br J Pharmacol; 2010 Nov; 161(5):1172-85. PubMed ID: 20636393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ATP-sensitive K+ channel openers prevent Ca2+ overload in rat cardiac mitochondria.
    Holmuhamedov EL; Wang L; Terzic A
    J Physiol; 1999 Sep; 519 Pt 2(Pt 2):347-60. PubMed ID: 10457054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-Wide Expression Profiling of Anoxia/Reoxygenation in Rat Cardiomyocytes Uncovers the Role of MitoKATP in Energy Homeostasis.
    Cao S; Liu Y; Sun W; Zhao L; Zhang L; Liu X; Yu T
    Oxid Med Cell Longev; 2015; 2015():756576. PubMed ID: 26171116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondria from rat uterine smooth muscle possess ATP-sensitive potassium channel.
    Vadzyuk OB; Kosterin SO
    Saudi J Biol Sci; 2018 Mar; 25(3):551-557. PubMed ID: 29686518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of a plant mitochondrial K+ATP channel and its involvement in cytochrome c release.
    Chiandussi E; Petrussa E; Macrì F; Vianello A
    J Bioenerg Biomembr; 2002 Jun; 34(3):177-84. PubMed ID: 12171067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potassium Ions Decrease Mitochondrial Matrix pH: Implications for ATP Production and Reactive Oxygen Species Generation.
    Naima J; Ohta Y
    Int J Mol Sci; 2024 Jan; 25(2):. PubMed ID: 38279231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potassium ion channels as a molecular target to reduce virus infection and mortality of honey bee colonies.
    Fellows CJ; Simone-Finstrom M; Anderson TD; Swale DR
    Virol J; 2023 Jun; 20(1):134. PubMed ID: 37349817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of an adaptation to hypoxia on cardiac tolerance to ischemia/reperfusion.
    Naryzhnaya NV; Maslov LN; Derkachev IA; Ma H; Zhang Y; Prasad NR; Singh N; Fu F; Pei J; Sarybaev A; Sydykov A
    J Biomed Res; 2022 Oct; 37(4):230-254. PubMed ID: 37183617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intracellular Quantum Sensing of Free-Radical Generation Induced by Acetaminophen (APAP) in the Cytosol, in Mitochondria and the Nucleus of Macrophages.
    Sharmin R; Nusantara AC; Nie L; Wu K; Elias Llumbet A; Woudstra W; Mzyk A; Schirhagl R
    ACS Sens; 2022 Nov; 7(11):3326-3334. PubMed ID: 36354956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cardioprotective mechanisms of mitochondria-targeted S-nitrosating agent and adenosine triphosphate-sensitive potassium channel opener are mutually exclusive.
    Ahmad T; Wang J; Velez AK; Suarez-Pierre A; Clement KC; Dong J; Sebestyen K; Canner JK; Murphy MP; Lawton JS
    JTCVS Open; 2021 Dec; 8():338-354. PubMed ID: 36004142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identity and function of a cardiac mitochondrial small conductance Ca
    Yang M; Camara AKS; Aldakkak M; Kwok WM; Stowe DF
    Biochim Biophys Acta Bioenerg; 2017 Jun; 1858(6):442-458. PubMed ID: 28342809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Classically Cardioprotective Agent Diazoxide Elicits Arrhythmias in Type 2 Diabetes Mellitus.
    Xie C; Hu J; Motloch LJ; Karam BS; Akar FG
    J Am Coll Cardiol; 2015 Sep; 66(10):1144-1156. PubMed ID: 26337994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiplicity of effectors of the cardioprotective agent, diazoxide.
    Coetzee WA
    Pharmacol Ther; 2013 Nov; 140(2):167-75. PubMed ID: 23792087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox signaling pathways involved in neuronal ischemic preconditioning.
    Thompson JW; Narayanan SV; Perez-Pinzon MA
    Curr Neuropharmacol; 2012 Dec; 10(4):354-69. PubMed ID: 23730259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiology of potassium channels in the inner membrane of mitochondria.
    Szabò I; Leanza L; Gulbins E; Zoratti M
    Pflugers Arch; 2012 Feb; 463(2):231-46. PubMed ID: 22089812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isoflurane differentially modulates mitochondrial reactive oxygen species production via forward versus reverse electron transport flow: implications for preconditioning.
    Hirata N; Shim YH; Pravdic D; Lohr NL; Pratt PF; Weihrauch D; Kersten JR; Warltier DC; Bosnjak ZJ; Bienengraeber M
    Anesthesiology; 2011 Sep; 115(3):531-40. PubMed ID: 21862887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Post-ischemic early acidosis in cardiac postconditioning modifies the activity of antioxidant enzymes, reduces nitration, and favors protein S-nitrosylation.
    Penna C; Perrelli MG; Tullio F; Moro F; Parisella ML; Merlino A; Pagliaro P
    Pflugers Arch; 2011 Aug; 462(2):219-33. PubMed ID: 21544520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.