BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 1153021)

  • 1. Inhibition of gluconeogenesis in rat renal cortex slices by metabolites of L-tryptophan in vitro.
    Endou H; Reuter E; Weber HJ
    Naunyn Schmiedebergs Arch Pharmacol; 1975; 287(3):297-308. PubMed ID: 1153021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of tryptophan and its metabolites on gluconeogenesis in mammalian tissues.
    Pogson CI; Crisp DM; Smith SA
    Acta Vitaminol Enzymol; 1975; 29(1-6):232-5. PubMed ID: 1244097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tryptophan and glucose metabolism in rat liver cells. The effects of DL-6-chlorotryptophan, 4-chloro-3-hydroxyanthranilate and pyrazinamide.
    Cook JS; Pogson CI
    Biochem J; 1983 Aug; 214(2):511-6. PubMed ID: 6688524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quinolinate inhibition of gluconeogenesis is dependent on cytosolic oxalacetate concentration. An explanation for the differential inhibition of lactate and pyruvate gluconeogenesis.
    Gabbay RA
    FEBS Lett; 1985 Sep; 189(2):367-72. PubMed ID: 2931305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lack of inhibition by L-tryptophan or quinolinate of gluconeogenesis in diabetic rats.
    Alvares FL; Ray PD
    J Biol Chem; 1974 Apr; 249(7):2058-62. PubMed ID: 4274233
    [No Abstract]   [Full Text] [Related]  

  • 6. Responses of hepatic phosphoenolypyruvate carboxykinase activities from normal and diabetic rats to quinolinate inhibition and ferrous ion activation.
    Maxwell JR; Ray PD
    Biochim Biophys Acta; 1980 Jul; 614(1):163-72. PubMed ID: 7397200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of phosphoenolpyruvate carboxykinase, glyceroneogenesis and fatty acid synthesis in rat adipose tissue by quinolinate and 3-mercaptopicolinate.
    MacDonald MJ; Grewe BK
    Biochim Biophys Acta; 1981 Jan; 663(1):302-13. PubMed ID: 7213768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glucose metabolism and hemoglobin reactivity in human red blood cells exposed to the tryptophan metabolites 3-hydroxyanthranilate, quinolinate and picolinate.
    Dykens JA; Sullivan SG; Stern A
    Biochem Pharmacol; 1989 May; 38(10):1555-62. PubMed ID: 2525040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Selective inhibition of hepatic gluconeogenesis gy tryptophan administration].
    Sánchez-Pozo A; Lupiáñez JA; Corno A; Gil A; Sánchez-Medina F
    Rev Esp Fisiol; 1982 Jun; 38(2):215-20. PubMed ID: 7122977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fasciola hepatica: inhibition of phosphoenolpyruvate carboxykinase, and end-product formation by quinolinic acid and 3-mercaptopicolinic acid.
    Lloyd GM; Barrett J
    Exp Parasitol; 1983 Oct; 56(2):259-65. PubMed ID: 6225676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of renal gluconeogenesis in rats by ochratoxin.
    Meisner H; Selanik P
    Biochem J; 1979 Jun; 180(3):681-4. PubMed ID: 486143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of L-3,4-dihydroxyphenylalanine metabolism to the inhibition of gluconeogenesis in rabbit kidney-cortex tubules.
    Drozak J; Doroszewska R; Chodnicka K; Winiarska K; Bryla J
    Int J Biochem Cell Biol; 2005 Jun; 37(6):1269-80. PubMed ID: 15778090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of renal gluconeogenesis by guinolinate and hydrazine in diabetic rats.
    Suzuki T; Ferris RK; Gordon EE
    Endocrinology; 1975 Oct; 97(4):1058-60. PubMed ID: 127701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of phosphoenolpyruvate carboxykinase by glutamine and ATP as possible control mechanisms of renal gluconeogenesis.
    Peters HH; Stumpf B; Hamm HH; Graf B; Boie-Nath A; Stiller G; Seubert W
    Curr Probl Clin Biochem; 1976; 6():336-45. PubMed ID: 187382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3-Mercaptopicolinic acid, a preferential inhibitor of the cytosolic phosphoenolpyruvate carboxykinase.
    Robinson BH; Oei J
    FEBS Lett; 1975 Oct; 58(1):12-5. PubMed ID: 1225570
    [No Abstract]   [Full Text] [Related]  

  • 16. Mechanism of 3-mercaptopicolinic acid inhibition of hepatic phosphoenolpyruvate carboxykinase (GTP).
    Jomain-Baum M; Schramm VL; Hanson RW
    J Biol Chem; 1976 Jan; 251(1):37-44. PubMed ID: 1244353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolism of L-tryptophan to kynurenate and quinolinate in the central nervous system: effects of 6-chlorotryptophan and 4-chloro-3-hydroxyanthranilate.
    Naritsin DB; Saito K; Markey SP; Chen CY; Heyes MP
    J Neurochem; 1995 Nov; 65(5):2217-26. PubMed ID: 7595510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of tryptophan metabolites in regulating gluconeogenesis.
    Lardy HA
    Am J Clin Nutr; 1971 Jul; 24(7):764-5. PubMed ID: 5091519
    [No Abstract]   [Full Text] [Related]  

  • 19. Phosphoenolpyruvate carboxykinase from Onchocerca volvulus and O. gibsoni.
    Walter RD; Albiez EJ
    Trop Med Parasitol; 1986 Dec; 37(4):356-8. PubMed ID: 2951841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidative reactivity of the tryptophan metabolites 3-hydroxyanthranilate, cinnabarinate, quinolinate and picolinate.
    Dykens JA; Sullivan SG; Stern A
    Biochem Pharmacol; 1987 Jan; 36(2):211-7. PubMed ID: 2949752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.