These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 11530844)
21. The entorhinal cortex of the monkey: I. Cytoarchitectonic organization. Amaral DG; Insausti R; Cowan WM J Comp Neurol; 1987 Oct; 264(3):326-55. PubMed ID: 2445795 [TBL] [Abstract][Full Text] [Related]
22. Distribution of acetylcholinesterase in the hippocampal region of the mouse: II. Subiculum and hippocampus. Slomianka L; Geneser FA J Comp Neurol; 1991 Oct; 312(4):525-36. PubMed ID: 1722222 [TBL] [Abstract][Full Text] [Related]
23. Distribution of calbindin D-28k in the entorhinal, perirhinal, and parahippocampal cortices of the macaque monkey. Suzuki WA; Porteros A J Comp Neurol; 2002 Sep; 451(4):392-412. PubMed ID: 12210132 [TBL] [Abstract][Full Text] [Related]
24. Distribution of calcium-binding proteins immunoreactivity in the bottlenose dolphin entorhinal cortex. Graïc JM; Grandis A; Sacchini S; Tagliavia C; Salamanca G; Cozzi B; Bombardi C Front Neuroanat; 2024; 18():1321025. PubMed ID: 38379680 [TBL] [Abstract][Full Text] [Related]
25. Histochemical demonstration of zinc in the hippocampal region of the domestic pig: I. Entorhinal area, parasubiculum, and presubiculum. Holm IE; Geneser FA J Comp Neurol; 1989 Sep; 287(2):145-63. PubMed ID: 2477401 [TBL] [Abstract][Full Text] [Related]
26. Distribution and morphology of serotonin-immunoreactive axons in the retrohippocampal areas of the New Zealand white rabbit. Bjarkam CR; Sørensen JC; Geneser FA Anat Embryol (Berl); 2005 Oct; 210(3):199-207. PubMed ID: 16170538 [TBL] [Abstract][Full Text] [Related]
27. Topographical and laminar distribution of cortical input to the monkey entorhinal cortex. Mohedano-Moriano A; Pro-Sistiaga P; Arroyo-Jimenez MM; Artacho-Pérula E; Insausti AM; Marcos P; Cebada-Sánchez S; Martínez-Ruiz J; Muñoz M; Blaizot X; Martinez-Marcos A; Amaral DG; Insausti R J Anat; 2007 Aug; 211(2):250-60. PubMed ID: 17573826 [TBL] [Abstract][Full Text] [Related]
28. Stereological analysis of the reorganization of the dentate gyrus following entorhinal cortex lesion in mice. Phinney AL; Calhoun ME; Woods AG; Deller T; Jucker M Eur J Neurosci; 2004 Apr; 19(7):1731-40. PubMed ID: 15078547 [TBL] [Abstract][Full Text] [Related]
29. Stimulation of the parasubiculum modulates entorhinal cortex responses to piriform cortex inputs in vivo. Caruana DA; Chapman CA J Neurophysiol; 2004 Aug; 92(2):1226-35. PubMed ID: 15044514 [TBL] [Abstract][Full Text] [Related]
30. Coexpression of vesicular glutamate transporters 1 and 2, glutamic acid decarboxylase and calretinin in rat entorhinal cortex. Wouterlood FG; Canto CB; Aliane V; Boekel AJ; Grosche J; Härtig W; Beliën JA; Witter MP Brain Struct Funct; 2007 Dec; 212(3-4):303-19. PubMed ID: 17965879 [TBL] [Abstract][Full Text] [Related]
31. Projections from the periamygdaloid cortex to the amygdaloid complex, the hippocampal formation, and the parahippocampal region: a PHA-L study in the rat. Majak K; Pitkänen A Hippocampus; 2003; 13(8):922-42. PubMed ID: 14750655 [TBL] [Abstract][Full Text] [Related]
32. Morphological and electrophysiological characteristics of layer V neurons of the rat lateral entorhinal cortex. Hamam BN; Amaral DG; Alonso AA J Comp Neurol; 2002 Sep; 451(1):45-61. PubMed ID: 12209840 [TBL] [Abstract][Full Text] [Related]
33. Co-expression of calretinin and gamma-aminobutyric acid in neurons of the entorhinal cortex of the common marmoset monkey. Pothuizen HH; Feldon J; Jongen-Rêlo AL Hippocampus; 2004; 14(5):615-27. PubMed ID: 15301438 [TBL] [Abstract][Full Text] [Related]
34. A novel population of calretinin-positive neurons comprises reelin-positive Cajal-Retzius cells in the hippocampal formation of the adult domestic pig. Abrahám H; Tóth Z; Seress L Hippocampus; 2004; 14(3):385-401. PubMed ID: 15132437 [TBL] [Abstract][Full Text] [Related]
35. Cytoarchitectonics and afferent/efferent reorganization of neurons in layers II and III of the lateral entorhinal cortex in the mouse pilocarpine model of temporal lobe epilepsy. Ma DL; Tang YC; Tang FR J Neurosci Res; 2008 May; 86(6):1324-42. PubMed ID: 18058944 [TBL] [Abstract][Full Text] [Related]
36. Pigmentarchitectonic subfields of the entorhinal region as revealed in tangential sections. Hanke J; Yilmazer-Hanke DM J Hirnforsch; 1997; 38(4):427-32. PubMed ID: 9476206 [TBL] [Abstract][Full Text] [Related]
37. Input from the presubiculum to dendrites of layer-V neurons of the medial entorhinal cortex of the rat. Wouterlood FG; Van Haeften T; Eijkhoudt M; Baks-Te-Bulte L; Goede PH; Witter MP Brain Res; 2004 Jul; 1013(1):1-12. PubMed ID: 15196963 [TBL] [Abstract][Full Text] [Related]
38. Projections from the posterior cortical nucleus of the amygdala to the hippocampal formation and parahippocampal region in rat. Kemppainen S; Jolkkonen E; Pitkänen A Hippocampus; 2002; 12(6):735-55. PubMed ID: 12542226 [TBL] [Abstract][Full Text] [Related]
39. Amygdala input promotes spread of excitatory neural activity from perirhinal cortex to the entorhinal-hippocampal circuit. Kajiwara R; Takashima I; Mimura Y; Witter MP; Iijima T J Neurophysiol; 2003 Apr; 89(4):2176-84. PubMed ID: 12611981 [TBL] [Abstract][Full Text] [Related]
40. Comparison of commissural sprouting in the mouse and rat fascia dentata after entorhinal cortex lesion. Del Turco D; Woods AG; Gebhardt C; Phinney AL; Jucker M; Frotscher M; Deller T Hippocampus; 2003; 13(6):685-99. PubMed ID: 12962314 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]