These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 11530926)

  • 1. Multiphase flow and transport in fractured clay/sand sequences.
    Reynolds DA; Kueper BH
    J Contam Hydrol; 2001 Sep; 51(1-2):41-62. PubMed ID: 11530926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Field study of TCE diffusion profiles below DNAPL to assess aquitard integrity.
    Parker BL; Cherry JA; Chapman SW
    J Contam Hydrol; 2004 Oct; 74(1-4):197-230. PubMed ID: 15358493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical examination of the factors controlling DNAPL migration through a single fracture.
    Reynolds DA; Kueper BH
    Ground Water; 2002; 40(4):368-77. PubMed ID: 12113355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plume persistence caused by back diffusion from thin clay layers in a sand aquifer following TCE source-zone hydraulic isolation.
    Parker BL; Chapman SW; Guilbeault MA
    J Contam Hydrol; 2008 Nov; 102(1-2):86-104. PubMed ID: 18775583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiphase flow and transport through fractured heterogeneous porous media.
    Reynolds DA; Kueper BH
    J Contam Hydrol; 2004 Jul; 71(1-4):89-110. PubMed ID: 15145563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioenhanced dissolution of dense non-aqueous phase of trichloroethylene as affected by iron reducing conditions: model systems and environmental samples.
    Paul L; Smolders E
    Chemosphere; 2015 Jan; 119():1113-1119. PubMed ID: 25460750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of DNAPL contamination from the saturated zone by the combined effect of vertical upward flushing and density reduction.
    Hofstee C; Gutiérrez Ziegler C; Trötschler O; Braun J
    J Contam Hydrol; 2003 Dec; 67(1-4):61-78. PubMed ID: 14607470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Architecture, persistence and dissolution of a 20 to 45 year old trichloroethene DNAPL source zone.
    Rivett MO; Dearden RA; Wealthall GP
    J Contam Hydrol; 2014 Dec; 170():95-115. PubMed ID: 25444120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical oxidation of chlorinated non-aqueous phase liquid by hydrogen peroxide in natural sand systems.
    Yeh CK; Wu HM; Chen TC
    J Hazard Mater; 2003 Jan; 96(1):29-51. PubMed ID: 12475477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accumulation of DNAPL waste in subsurface clayey lenses and layers.
    Ayral-Çınar D; Demond AH
    J Contam Hydrol; 2020 Feb; 229():103579. PubMed ID: 31818434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DFN-M field characterization of sandstone for a process-based site conceptual model and numerical simulations of TCE transport with degradation.
    Pierce AA; Chapman SW; Zimmerman LK; Hurley JC; Aravena R; Cherry JA; Parker BL
    J Contam Hydrol; 2018 May; 212():96-114. PubMed ID: 29530334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-resolution delineation of chlorinated volatile organic compounds in a dipping, fractured mudstone: Depth- and strata-dependent spatial variability from rock-core sampling.
    Goode DJ; Imbrigiotta TE; Lacombe PJ
    J Contam Hydrol; 2014 Dec; 171():1-11. PubMed ID: 25461882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aquifer vulnerability to pesticide migration through till aquitards.
    Jørgensen PR; McKay LD; Kistrup JP
    Ground Water; 2004; 42(6-7):841-55. PubMed ID: 15584298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-situ oxidation of trichloroethene by permanganate: effects on porous medium hydraulic properties.
    Schroth MH; Oostrom M; Wietsma TW; Istok JD
    J Contam Hydrol; 2001 Jul; 50(1-2):79-98. PubMed ID: 11475162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Motile Geobacter dechlorinators migrate into a model source zone of trichloroethene dense non-aqueous phase liquid: experimental evaluation and modeling.
    Philips J; Miroshnikov A; Haest PJ; Springael D; Smolders E
    J Contam Hydrol; 2014 Dec; 170():28-38. PubMed ID: 25306502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of DNAPL contact on the structure of smectitic clay materials.
    Ayral D; Otero M; Goltz MN; Demond AH
    Chemosphere; 2014 Jan; 95():182-7. PubMed ID: 24054135
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Factors affecting gas migration and contaminant redistribution in heterogeneous porous media subject to electrical resistance heating.
    Munholland JL; Mumford KG; Kueper BH
    J Contam Hydrol; 2016 Jan; 184():14-24. PubMed ID: 26638038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-dimensional DNAPL migration affected by groundwater flow in unconfined aquifer.
    Kamon M; Endo K; Kawabata J; Inui T; Katsumi T
    J Hazard Mater; 2004 Jul; 110(1-3):1-12. PubMed ID: 15177722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced sorption of trichloroethene by smectite clay exchanged with Cs+.
    Aggarwal V; Li H; Boyd SA; Teppen BJ
    Environ Sci Technol; 2006 Feb; 40(3):894-9. PubMed ID: 16509334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of DNAPL source zones in clay-sand media via joint inversion of DC resistivity, induced polarization and borehole data.
    Kang X; Power C; Kokkinaki A; Revil A; Wu J; Shi X; Deng Y
    J Contam Hydrol; 2023 Sep; 258():104240. PubMed ID: 37683375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.