BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 11530927)

  • 41. Radon as a naturally occurring tracer for the assessment of residual NAPL contamination of aquifers.
    Schubert M; Paschke A; Lau S; Geyer W; Knöller K
    Environ Pollut; 2007 Feb; 145(3):920-7. PubMed ID: 16781031
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of domain shapes on the morphological evolution of nonaqueous-phase-liquid dissolution fronts in fluid-saturated porous media.
    Zhao C; Hobbs BE; Ord A
    J Contam Hydrol; 2012 Sep; 138-139():123-40. PubMed ID: 22892525
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Surfactant-enhanced remediation of organic contaminated soil and water.
    Paria S
    Adv Colloid Interface Sci; 2008 Apr; 138(1):24-58. PubMed ID: 18154747
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dissolution of nonuniformly distributed immiscible liquid: intermediate-scale experiments and mathematical modeling.
    Brusseau ML; Zhang Z; Nelson NT; Cain RB; Tick GR; Oostrom M
    Environ Sci Technol; 2002 Mar; 36(5):1033-41. PubMed ID: 11917988
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Feasibility of in situ NAPL-contaminated aquifer bioremediation by biodegradable nutrient-surfactant mix.
    Zoller U; Rubin H
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2001 Sep; 36(8):1451-71. PubMed ID: 11597107
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A practical model for mobile, residual, and entrapped NAPL in water-wet porous media.
    White MD; Oostrom M; Lenhard RJ
    Ground Water; 2004; 42(5):734-46. PubMed ID: 15457796
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Surfactant dissolution and mobilization of LNAPL contaminants in aquifers.
    Chevalier LR
    Environ Monit Assess; 2003 May; 84(1-2):19-33. PubMed ID: 12733806
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Experimentally based pore network modeling of NAPL dissolution process in heterogeneous porous media.
    Khasi S; Ramezanzadeh M; Ghazanfari MH
    J Contam Hydrol; 2020 Jan; 228():103565. PubMed ID: 31718908
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Multicomponent NAPL source dissolution: evaluation of mass-transfer coefficients.
    Mobile MA; Widdowson MA; Gallagher DL
    Environ Sci Technol; 2012 Sep; 46(18):10047-54. PubMed ID: 22873644
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Evaluation of simplified mass transfer models to simulate the impacts of source zone architecture on nonaqueous phase liquid dissolution in heterogeneous porous media.
    Zhang C; Yoon H; Werth CJ; Valocchi AJ; Basu NB; Jawitz JW
    J Contam Hydrol; 2008 Nov; 102(1-2):49-60. PubMed ID: 18579257
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Experiments and sensitivity coefficients analysis for multiphase flow model calibration of enhanced DNAPL dissolution.
    Karaoglu AG; Copty NK; Akyol NH; Kilavuz SA; Babaei M
    J Contam Hydrol; 2019 Aug; 225():103515. PubMed ID: 31181539
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Entrapment and dissolution of DNAPLs in heterogeneous porous media.
    Bradford SA; Rathfelder KM; Lang J; Abriola LM
    J Contam Hydrol; 2003 Dec; 67(1-4):133-57. PubMed ID: 14607474
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Surfactant-enhanced aquifer remediation: Mechanisms, influences, limitations and the countermeasures.
    Huo L; Liu G; Yang X; Ahmad Z; Zhong H
    Chemosphere; 2020 Aug; 252():126620. PubMed ID: 32443278
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An environmental screening model to assess the consequences to soil and groundwater from railroad-tank-car spills of light non-aqueous phase liquids.
    Yoon H; Werth CJ; Barkan CP; Schaeffer DJ; Anand P
    J Hazard Mater; 2009 Jun; 165(1-3):332-44. PubMed ID: 19036513
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Enhanced removal of NAPL constituent from aquifer during surfactant flushing with aqueous hydraulic barriers of high viscosity.
    Ahn D; Choi JK; Kim H
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2017 Jun; 52(7):590-597. PubMed ID: 28281884
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Measurement of NAPL-water interfacial areas and mass transfer rates in two-dimensional flow cell.
    Li M; Zhai Y; Wan L
    Water Sci Technol; 2016 Nov; 74(9):2145-2151. PubMed ID: 27842034
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Significance of groundwater flux on contaminant concentration and mass discharge in the nonaqueous phase liquid (NAPL) contaminated zone.
    Zhu J; Sun D
    J Contam Hydrol; 2016 Sep; 192():158-164. PubMed ID: 27500747
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Evaluating the reliability of equilibrium dissolution assumption from residual gasoline in contact with water saturated sands.
    Lekmine G; Sookhak Lari K; Johnston CD; Bastow TP; Rayner JL; Davis GB
    J Contam Hydrol; 2017 Jan; 196():30-42. PubMed ID: 27979461
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparison of theory and experiment for NAPL dissolution in porous media.
    Bahar T; Golfier F; Oltéan C; Lefevre E; Lorgeoux C
    J Contam Hydrol; 2018 Apr; 211():49-64. PubMed ID: 29573829
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effects of surface active agents on DNAPL migration and distribution in saturated porous media.
    Cheng Z; Gao B; Xu H; Sun Y; Shi X; Wu J
    Sci Total Environ; 2016 Nov; 571():1147-54. PubMed ID: 27450259
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.