These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 11531088)

  • 1. Production of a peptidoglycolipid bioemulsifier by Pseudomonas aeruginosa grown on hydrocarbon.
    Ilori MO; Amund DI
    Z Naturforsch C J Biosci; 2001; 56(7-8):547-52. PubMed ID: 11531088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioemulsifier production by Streptomyces sp. S22 isolated from garden soil.
    Maniyar JP; Doshi DV; Bhuyan SS; Mujumdar SS
    Indian J Exp Biol; 2011 Apr; 49(4):293-7. PubMed ID: 21614894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of extracellular emulsifying agent by Pseudomonas aeruginosa UG1.
    MacElwee CG; Lee H; Trevors JT
    J Ind Microbiol; 1990 Jan; 5(1):25-31. PubMed ID: 1367447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Chemical composition and role of Pseudomonas aeruginosa peptidoglycolipid in hydrocarbon assimilation].
    Koronelli TV; Komarova TI; Denisov IuV
    Mikrobiologiia; 1983; 52(5):767-70. PubMed ID: 6420650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of a novel bioemulsifier from Pseudomonas stutzeri.
    Fan Y; Tao W; Huang H; Li S
    World J Microbiol Biotechnol; 2017 Aug; 33(8):161. PubMed ID: 28755169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rhamnolipid production by a novel thermophilic hydrocarbon-degrading Pseudomonas aeruginosa AP02-1.
    Perfumo A; Banat IM; Canganella F; Marchant R
    Appl Microbiol Biotechnol; 2006 Aug; 72(1):132. PubMed ID: 16344932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Verification of degradation of n-alkanes in diesel oil by Pseudomonas aeruginosa strain WatG in soil microcosms.
    Ueno A; Hasanuzzaman M; Yumoto I; Okuyama H
    Curr Microbiol; 2006 Mar; 52(3):182-5. PubMed ID: 16502290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrastructure of two oil-degrading bacteria isolated from the tropical soil environment.
    Ilori MO; Amund D; Robinson GK
    Folia Microbiol (Praha); 2000; 45(3):259-62. PubMed ID: 11271812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization and emulsifying property of a novel bioemulsifier by Aeribacillus pallidus YM-1.
    Zheng C; Li Z; Su J; Zhang R; Liu C; Zhao M
    J Appl Microbiol; 2012 Jul; 113(1):44-51. PubMed ID: 22515599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing the role of Pseudomonas aeruginosa surface-active gene expression in hexadecane biodegradation in sand.
    Holden PA; LaMontagne MG; Bruce AK; Miller WG; Lindow SE
    Appl Environ Microbiol; 2002 May; 68(5):2509-18. PubMed ID: 11976128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of environmental factors for improved production of rhamnolipid biosurfactant by Pseudomonas aeruginosa RS29 on glycerol.
    Saikia RR; Deka S; Deka M; Sarma H
    J Basic Microbiol; 2012 Aug; 52(4):446-57. PubMed ID: 22144225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrocarbon assimilation and biosurfactant production in Pseudomonas aeruginosa mutants.
    Koch AK; Käppeli O; Fiechter A; Reiser J
    J Bacteriol; 1991 Jul; 173(13):4212-9. PubMed ID: 1648079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production and characterization of rhamnolipid biosurfactant from waste frying coconut oil using a novel Pseudomonas aeruginosa D.
    George S; Jayachandran K
    J Appl Microbiol; 2013 Feb; 114(2):373-83. PubMed ID: 23164038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of rhamnolipid production by Burkholderia glumae.
    Costa SG; Déziel E; Lépine F
    Lett Appl Microbiol; 2011 Dec; 53(6):620-7. PubMed ID: 21933203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of rhamnolipid produced by Pseudomonas aeruginosa isolate Bs20.
    Abdel-Mawgoud AM; Aboulwafa MM; Hassouna NA
    Appl Biochem Biotechnol; 2009 May; 157(2):329-45. PubMed ID: 18584127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of biosurfactant using different hydrocarbons by Pseudomonas aeruginosa EBN-8 mutant.
    Raza ZA; Khan MS; Khalid ZM; Rehman A
    Z Naturforsch C J Biosci; 2006; 61(1-2):87-94. PubMed ID: 16610223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosurfactant synthesis by Pseudomonas aeruginosa LBI isolated from a hydrocarbon-contaminated site.
    Pirôllo MP; Mariano AP; Lovaglio RB; Costa SG; Walter V; Hausmann R; Contiero J
    J Appl Microbiol; 2008 Nov; 105(5):1484-90. PubMed ID: 18795978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosurfactant production from n-paraffins by an air isolate Pseudomonas aeruginosa OCD1.
    Sahoo S; Datta S; Biswas D; Banik Choudhury R
    J Oleo Sci; 2010; 59(11):601-5. PubMed ID: 20972360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipopolysaccharide changes and cytoplasmic polyphosphate granule accumulation in Pseudomonas aeruginosa during growth on hexadecane.
    Miguez CB; Beveridge TJ; Ingram JM
    Can J Microbiol; 1986 Mar; 32(3):248-53. PubMed ID: 3085910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rhamnolipid biosurfactant enhancement of hexadecane biodegradation by Pseudomonas aeruginosa.
    Shreve GS; Inguva S; Gunnam S
    Mol Mar Biol Biotechnol; 1995 Dec; 4(4):331-7. PubMed ID: 8541984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.