These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 11531353)

  • 1. Linewidth-resolved 15N HSQC, a simple 3D method to measure 15N relaxation times from T1 and T2 linewidths.
    Heikkinen S; Kilpeläinen I
    J Magn Reson; 2001 Aug; 151(2):314-9. PubMed ID: 11531353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of protein 15N relaxation times by inverse Laplace transformation.
    Koskela H; Kilpeläinen I; Heikkinen S
    Magn Reson Chem; 2004 Jan; 42(1):61-5. PubMed ID: 14745818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. J-multiplied HSQC (MJ-HSQC): a new method for measuring 3J(HNHalpha) couplings in 15N-labeled proteins.
    Heikkinen S; Aitio H; Permi P; Folmer R; Lappalainen K; Kilpeläinen I
    J Magn Reson; 1999 Mar; 137(1):243-6. PubMed ID: 10053154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D NMR experiments for measuring 15N relaxation data of large proteins: application to the 44 kDa ectodomain of SIV gp41.
    Caffrey M; Kaufman J; Stahl SJ; Wingfield PT; Gronenborn AM; Clore GM
    J Magn Reson; 1998 Dec; 135(2):368-72. PubMed ID: 9878465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D accordion spectroscopy for measuring 15N and 13CO relaxation rates in poorly resolved NMR spectra.
    Carr PA; Fearing DA; Palmer AG
    J Magn Reson; 1998 May; 132(1):25-33. PubMed ID: 9615410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast multi-dimensional NMR by minimal sampling.
    Kupce E; Freeman R
    J Magn Reson; 2008 Mar; 191(1):164-8. PubMed ID: 18191598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of homonuclear proton couplings from regular 2D COSY spectra.
    Delaglio F; Wu Z; Bax A
    J Magn Reson; 2001 Apr; 149(2):276-81. PubMed ID: 11318630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computer assisted assignment of 13C or 15N edited 3D-NOESY-HSQC spectra using back calculated and experimental spectra.
    Görler A; Gronwald W; Neidig KP; Kalbitzer HR
    J Magn Reson; 1999 Mar; 137(1):39-45. PubMed ID: 10053131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct measurements of protein backbone 15N spin relaxation rates from peak line-width using a fully-relaxed Accordion 3D HNCO experiment.
    Chen K; Tjandra N
    J Magn Reson; 2009 Mar; 197(1):71-6. PubMed ID: 19114314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An iterative fitting procedure for the determination of longitudinal NMR cross-correlation rates.
    Wang L; Kurochkin AV; Zuiderweg ER
    J Magn Reson; 2000 May; 144(1):175-85. PubMed ID: 10783290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Signal enhancement using 45 degrees water flipback for 3D 15N-edited ROESY and NOESY HMQC and HSQC.
    Gruschus JM; Ferretti JA
    J Magn Reson; 1999 Oct; 140(2):451-9. PubMed ID: 10497050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of (1)J(NC') and (2)J(H(N))(C') couplings from spin-state-selective two-dimensional correlation spectrum.
    Permi P; Heikkinen S; Kilpeläinen I; Annila A
    J Magn Reson; 1999 Sep; 140(1):32-40. PubMed ID: 10479547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of signal processing methods for the quantification of a multi-exponential signal: the glycogen 13C-1 NMR signal.
    Overloop K; Van Hecke P; Vanstapel F; Chen H; Van Huffel S; Knijn A; van Ormondt D
    NMR Biomed; 1996 Oct; 9(7):315-21. PubMed ID: 9134542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of the effective correlation time modulating 1H NMR relaxation processes of bound water in protein solutions.
    Yilmaz A; Budak H; Ulak FS
    Magn Reson Imaging; 2008 Feb; 26(2):254-60. PubMed ID: 17683891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A simple method to predict protein flexibility using secondary chemical shifts.
    Berjanskii MV; Wishart DS
    J Am Chem Soc; 2005 Nov; 127(43):14970-1. PubMed ID: 16248604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transverse 1H cross relaxation in 1H-15N correlated 1H CPMG experiments.
    Ishima R; Louis JM; Torchia DA
    J Magn Reson; 1999 Mar; 137(1):289-92. PubMed ID: 10053163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model-free approach beyond the borders of its applicability.
    Korzhnev DM; Orekhov VY; Arseniev AS
    J Magn Reson; 1997 Aug; 127(2):184-91. PubMed ID: 9281482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resolving ambiguities in two-dimensional NMR spectra: the 'TILT' experiment.
    Kupce E; Freeman R
    J Magn Reson; 2005 Feb; 172(2):329-32. PubMed ID: 15649760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-domain quantification of multiple-quantum-filtered (23)Na signal using continuous wavelet transform analysis.
    Serrai H; Borthakur A; Senhadji L; Reddy R; Bansal N
    J Magn Reson; 2000 Feb; 142(2):341-7. PubMed ID: 10648152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nuclear magnetic resonance relaxation in determination of residue-specific 15N chemical shift tensors in proteins in solution: protein dynamics, structure, and applications of transverse relaxation optimized spectroscopy.
    Fushman D; Cowburn D
    Methods Enzymol; 2001; 339():109-26. PubMed ID: 11462809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.