These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 11531525)
21. Dynamics of classical particles in oval or elliptic billiards with a dispersing mechanism. da Costa DR; Dettmann CP; de Oliveira JA; Leonel ED Chaos; 2015 Mar; 25(3):033109. PubMed ID: 25833431 [TBL] [Abstract][Full Text] [Related]
22. Machta-Zwanzig regime of anomalous diffusion in infinite-horizon billiards. Cristadoro G; Gilbert T; Lenci M; Sanders DP Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):050102. PubMed ID: 25493720 [TBL] [Abstract][Full Text] [Related]
23. From ballistic to Brownian motion through enhanced diffusion in vertex-splitting polygonal and disk-dispersing Sinai billiards. Kokshenev VB; Vicentini E Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jan; 65(1 Pt 2):015201. PubMed ID: 11800722 [TBL] [Abstract][Full Text] [Related]
24. Solutions of the Lippmann-Schwinger equation for confocal parabolic billiards. Ruiz-Biestro A; Gutiérrez-Vega JC Phys Rev E; 2024 Mar; 109(3-1):034203. PubMed ID: 38632773 [TBL] [Abstract][Full Text] [Related]
25. Understanding quantum scattering properties in terms of purely classical dynamics: two-dimensional open chaotic billiards. Méndez-Bermúdez JA; Luna-Acosta GA; Seba P; Pichugin KN Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 2):046207. PubMed ID: 12443299 [TBL] [Abstract][Full Text] [Related]
26. Quantum chaotic trajectories in integrable right triangular billiards. de Sales JA; Florencio J Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jan; 67(1 Pt 2):016216. PubMed ID: 12636594 [TBL] [Abstract][Full Text] [Related]
27. Ergodicity and quantum correlations in irrational triangular billiards. Araújo Lima T; Rodríguez-Pérez S; de Aguiar FM Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062902. PubMed ID: 23848743 [TBL] [Abstract][Full Text] [Related]
28. Quantization conditions in Bogomolny's transfer operator method. Chang CH Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 2):056202. PubMed ID: 12513581 [TBL] [Abstract][Full Text] [Related]
29. Quantum-classical correspondence in the wave functions of andreev billiards. Kormányos A; Kaufmann Z; Cserti J; Lambert CJ Phys Rev Lett; 2006 Jun; 96(23):237002. PubMed ID: 16803393 [TBL] [Abstract][Full Text] [Related]
30. Recurrence time distribution in mushroom billiards with parabolic hat. Tanaka H; Shudo A Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 2):036211. PubMed ID: 17025733 [TBL] [Abstract][Full Text] [Related]
31. Spectral analysis and an area-preserving extension of a piecewise linear intermittent map. Miyaguchi T; Aizawa Y Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jun; 75(6 Pt 2):066201. PubMed ID: 17677334 [TBL] [Abstract][Full Text] [Related]
32. From classical to quantum glasses with ultracold polar molecules. Lechner W; Zoller P Phys Rev Lett; 2013 Nov; 111(18):185306. PubMed ID: 24237535 [TBL] [Abstract][Full Text] [Related]
33. Exponential Fermi acceleration in general time-dependent billiards. Batistić B Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032909. PubMed ID: 25314506 [TBL] [Abstract][Full Text] [Related]
35. Crossover from regular to irregular behavior in current flow through open billiards. Berggren KF; Sadreev AF; Starikov AA Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jul; 66(1 Pt 2):016218. PubMed ID: 12241472 [TBL] [Abstract][Full Text] [Related]
36. Arbitrary trajectory quantization method. Biswas D Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 2):016213. PubMed ID: 11304341 [TBL] [Abstract][Full Text] [Related]
37. Intramolecular vibrational energy redistribution from a high frequency mode in the presence of an internal rotor: classical thick-layer diffusion and quantum localization. Manikandan P; Keshavamurthy S J Chem Phys; 2007 Aug; 127(6):064303. PubMed ID: 17705592 [TBL] [Abstract][Full Text] [Related]
38. Pseudopath semiclassical approximation to transport through open quantum billiards: Dyson equation for diffractive scattering. Stampfer C; Rotter S; Burgdörfer J; Wirtz L Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):036223. PubMed ID: 16241564 [TBL] [Abstract][Full Text] [Related]
39. Anomalous shell effect in the transition from a circular to a triangular billiard. Arita K; Brack M Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 2):056211. PubMed ID: 18643146 [TBL] [Abstract][Full Text] [Related]