These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 11531650)

  • 1. Prostaglandin E2 concentrations in rat renal cortical and medullary interstitium: effect of volume expansion and renal perfusion pressure.
    Kompanowska-Jezierska E; Berndt TJ; Knox FG
    Acta Physiol Scand; 2001 Aug; 172(4):287-9. PubMed ID: 11531650
    [No Abstract]   [Full Text] [Related]  

  • 2. Loss of renal function and microvascular blood flow after suprarenal aortic clamping and reperfusion (SPACR) above the superior mesenteric artery is greatly augmented compared with SPACR above the renal arteries.
    Myers SI; Wang L; Myers DJ
    J Vasc Surg; 2007 Feb; 45(2):357-66. PubMed ID: 17264017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iodinated contrast induced renal vasoconstriction is due in part to the downregulation of renal cortical and medullary nitric oxide synthesis.
    Myers SI; Wang L; Liu F; Bartula LL
    J Vasc Surg; 2006 Aug; 44(2):383-91. PubMed ID: 16890873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Opposed effects of prostaglandin E2 on perfusion of rat renal cortex and medulla: interactions with the renin-angiotensin system.
    Badzynska B; Sadowski J
    Exp Physiol; 2008 Dec; 93(12):1292-302. PubMed ID: 18586855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxygen-radical regulation of renal blood flow following suprarenal aortic clamping.
    Myers SI; Wang L; Liu F; Bartula LL
    J Vasc Surg; 2006 Mar; 43(3):577-86. PubMed ID: 16520177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suprarenal aortic clamping and reperfusion decreases medullary and cortical blood flow by decreased endogenous renal nitric oxide and PGE2 synthesis.
    Myers SI; Wang L; Liu F; Bartula LL
    J Vasc Surg; 2005 Sep; 42(3):524-31. PubMed ID: 16171601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of prostaglandins on papillary blood flow and pressure-natriuretic response.
    Roman RJ; Lianos E
    Hypertension; 1990 Jan; 15(1):29-35. PubMed ID: 2295512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blood flow-dependent changes in renal interstitial guanosine 3',5'-cyclic monophosphate in rabbits.
    Nishiyama A; Kimura S; Fukui T; Rahman M; Yoneyama H; Kosaka H; Abe Y
    Am J Physiol Renal Physiol; 2002 Feb; 282(2):F238-44. PubMed ID: 11788437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The regulation of blood perfusion in the renal cortex and medulla by reactive oxygen species and nitric oxide in the anaesthetised rat.
    Ahmeda AF; Johns EJ
    Acta Physiol (Oxf); 2012 Mar; 204(3):443-50. PubMed ID: 21827636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of prostaglandin E2 and I2 on renal cortical and medullary blood flow in rabbits.
    Yoshida M; Ueda S; Soejima H; Tsuruta K; Ikegami K
    Arch Int Pharmacodyn Ther; 1986 Jul; 282(1):108-17. PubMed ID: 3532982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Renal cortical and medullary microvascular blood flow autoregulation in rat.
    Harrison-Bernard LM; Navar LG
    Kidney Int Suppl; 1996 Dec; 57():S23-9. PubMed ID: 8941918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exaggerated volume expansion natriuresis in rats preloaded with hypertonic saline: a paradoxical enhancement by inhibition of prostaglandin synthesis.
    Kompanowska-Jezierska E; Walkowska A; Sadowski J
    Acta Physiol Scand; 1999 Nov; 167(3):189-94. PubMed ID: 10606820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship between renal perfusion pressure and blood flow in different regions of the kidney.
    Mattson DL; Lu S; Roman RJ; Cowley AW
    Am J Physiol; 1993 Mar; 264(3 Pt 2):R578-83. PubMed ID: 8457011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anemia increases the risk of renal cortical and medullary hypoxia during cardiopulmonary bypass.
    Darby PJ; Kim N; Hare GM; Tsui A; Wang Z; Harrington A; Mazer CD
    Perfusion; 2013 Nov; 28(6):504-11. PubMed ID: 23719516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Renal medullary tissue oxygenation is dependent on both cortical and medullary blood flow.
    O'Connor PM; Kett MM; Anderson WP; Evans RG
    Am J Physiol Renal Physiol; 2006 Mar; 290(3):F688-94. PubMed ID: 16219913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of renal perfusion pressure on renal medullary hydrogen peroxide and nitric oxide production.
    Jin C; Hu C; Polichnowski A; Mori T; Skelton M; Ito S; Cowley AW
    Hypertension; 2009 Jun; 53(6):1048-53. PubMed ID: 19433780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Altered pressure-natriuresis in obese Zucker rats.
    Fujiwara K; Hayashi K; Matsuda H; Kubota E; Honda M; Ozawa Y; Saruta T
    Hypertension; 1999 Jun; 33(6):1470-5. PubMed ID: 10373235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production and actions of the anandamide metabolite prostamide E2 in the renal medulla.
    Ritter JK; Li C; Xia M; Poklis JL; Lichtman AH; Abdullah RA; Dewey WL; Li PL
    J Pharmacol Exp Ther; 2012 Sep; 342(3):770-9. PubMed ID: 22685343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential effect of frusemide on renal medullary and cortical blood flow in the anaesthetised rat.
    Dobrowolski L; B dzyńska B; Sadowski J
    Exp Physiol; 2000 Nov; 85(6):783-9. PubMed ID: 11187972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pressure dependency of canine intrarenal blood flow within the range of autoregulation.
    Lerman LO; Bentley MD; Fiksen-Olsen MJ; Strick DM; Ritman EL; Romero JC
    Am J Physiol; 1995 Mar; 268(3 Pt 2):F404-9. PubMed ID: 7900839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.