BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 11531717)

  • 1. Osteogenic evaluation of glutaraldehyde crosslinked gelatin composite with fetal rat calvarial culture model.
    Liu HC; Yao CH; Sun JS; Lee CJ; Huang CW; Lin FH
    Artif Organs; 2001 Aug; 25(8):644-54. PubMed ID: 11531717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biological effects and cytotoxicity of the composite composed by tricalcium phosphate and glutaraldehyde cross-linked gelatin.
    Lin FH; Yao CH; Sun JS; Liu HC; Huang CW
    Biomaterials; 1998 May; 19(10):905-17. PubMed ID: 9690832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tricalcium phosphate and glutaraldehyde crosslinked gelatin incorporating bone morphogenetic protein--a viable scaffold for bone tissue engineering.
    Yang SH; Hsu CK; Wang KC; Hou SM; Lin FH
    J Biomed Mater Res B Appl Biomater; 2005 Jul; 74(1):468-75. PubMed ID: 15889421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An in vivo study of tricalcium phosphate and glutaraldehyde crosslinking gelatin conduits in peripheral nerve repair.
    Chen MH; Chen PR; Chen MH; Hsieh ST; Huang JS; Lin FH
    J Biomed Mater Res B Appl Biomater; 2006 Apr; 77(1):89-97. PubMed ID: 16211569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Release characteristics and bioactivity of gelatin-tricalcium phosphate membranes covalently immobilized with nerve growth factors.
    Chen PR; Chen MH; Lin FH; Su WY
    Biomaterials; 2005 Nov; 26(33):6579-87. PubMed ID: 16023717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biocompatibility and biodegradation of a bone composite containing tricalcium phosphate and genipin crosslinked gelatin.
    Yao CH; Liu BS; Hsu SH; Chen YS; Tsai CC
    J Biomed Mater Res A; 2004 Jun; 69(4):709-17. PubMed ID: 15162413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biocompatibility of NGF-grafted GTG membranes for peripheral nerve repair using cultured Schwann cells.
    Chen PR; Chen MH; Sun JS; Chen MH; Tsai CC; Lin FH
    Biomaterials; 2004 Nov; 25(25):5667-73. PubMed ID: 15159083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro evaluation of degradation and cytotoxicity of a novel composite as a bone substitute.
    Liu BS; Yao CH; Chen YS; Hsu SH
    J Biomed Mater Res A; 2003 Dec; 67(4):1163-9. PubMed ID: 14624502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calvarial bone response to a tricalcium phosphate-genipin crosslinked gelatin composite.
    Yao CH; Liu BS; Hsu SH; Chen YS
    Biomaterials; 2005 Jun; 26(16):3065-74. PubMed ID: 15603801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication and evaluation of a new composite composed of tricalcium phosphate, gelatin, and Chinese medicine as a bone substitute.
    Yao CH; Tsai HM; Chen YS; Liu BS
    J Biomed Mater Res B Appl Biomater; 2005 Nov; 75(2):277-88. PubMed ID: 16025468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel bone substitute composed of oligomeric proanthocyanidins-crosslinked gelatin and tricalcium phosphate.
    Chen KY; Shyu PC; Chen YS; Yao CH
    Macromol Biosci; 2008 Oct; 8(10):942-50. PubMed ID: 18555459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel bone substitute composite composed of tricalcium phosphate, gelatin and drynaria fortunei herbal extract.
    Dong GC; Chen HM; Yao CH
    J Biomed Mater Res A; 2008 Jan; 84(1):167-77. PubMed ID: 17607749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconstruction of calvarial defect using a tricalcium phosphate-oligomeric proanthocyanidins cross-linked gelatin composite.
    Chen KY; Shyu PC; Dong GC; Chen YS; Kuo WW; Yao CH
    Biomaterials; 2009 Mar; 30(9):1682-8. PubMed ID: 19136152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Porous gelatin/tricalcium phosphate/genipin composites containing lumbrokinase for bone repair.
    Fu YT; Sheu SY; Chen YS; Chen KY; Yao CH
    Bone; 2015 Sep; 78():15-22. PubMed ID: 25933942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osteogenic potential using a malleable, biodegradable composite added traditional Chinese medicine: in vitro and in vivo evaluations.
    Yao CH; Liu BS; Liu CG; Chen YS
    Am J Chin Med; 2006; 34(5):873-86. PubMed ID: 17080551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Preparation and ectopic osteoinduction study of macroporous bone substitute with calcium phosphate cements and rhBMP-2 loaded gelatin microspheres].
    Li M; Liu XD; Liu XY; Ge BF
    Zhongguo Gu Shang; 2011 May; 24(5):411-5. PubMed ID: 21688541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of transforming growth factor-β loaded onto β-tricalcium phosphate scaffold in a bone regeneration rat calvaria model.
    Elimelech R; Khoury N; Tamari T; Blumenfeld I; Gutmacher Z; Zigdon-Giladi H
    Clin Implant Dent Relat Res; 2019 Aug; 21(4):593-601. PubMed ID: 31025823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo evaluation of bone marrow stromal-derived osteoblasts-porous calcium phosphate ceramic composites as bone graft substitute for lumbar intervertebral spinal fusion.
    Kai T; Shao-qing G; Geng-ting D
    Spine (Phila Pa 1976); 2003 Aug; 28(15):1653-8. PubMed ID: 12897487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of an injectable, in situ crosslinkable, degradable polymeric carrier for osteogenic cell populations. Part 3. Proliferation and differentiation of encapsulated marrow stromal osteoblasts cultured on crosslinking poly(propylene fumarate).
    Payne RG; McGonigle JS; Yaszemski MJ; Yasko AW; Mikos AG
    Biomaterials; 2002 Nov; 23(22):4381-7. PubMed ID: 12219828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maturation state determines the response of osteogenic cells to surface roughness and 1,25-dihydroxyvitamin D3.
    Lohmann CH; Bonewald LF; Sisk MA; Sylvia VL; Cochran DL; Dean DD; Boyan BD; Schwartz Z
    J Bone Miner Res; 2000 Jun; 15(6):1169-80. PubMed ID: 10841186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.